stem rust

Displaying 61 - 70 of 80

Resistance to Stem Rust Race TTKSK Maps to the rpg4/Rpg5 Complex of Chromosome 5H of Barley

Race TTKSK (Ug99) of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici) is a serious threat to both wheat and barley production worldwide because of its wide virulence on many cultivars and rapid spread from eastern Africa.

Steffenson,B. J.; Jin,Y.; Brueggeman,R. S.; Kleinhofs,A.; Sun,Y.
Phytopathology
Year: 
2009
Volume: 
99
Issue: 
10.0
Start Page: 
1135.0
Other Page(s): 
1141.0

Stem Rust Resistance in A-Genome Diploid Relatives of Wheat

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, has been effectively controlled through the use of genetic resistance. P graminis f. sp. tritici race TTKSK (Ug99) possesses virulence to many resistance genes that have been used in wheat breeding worldwide. One strategy to aid breeders in developing resistant cultivars is to utilize resistance genes transferred from wild relatives to wheat. Stem rust resistance genes have previously been introgressed from Triticum monococcum to wheat. In order to identify additional resistance genes, we screened 1,061 accessions of T monococcum and 205 accessions of T urartu against race TTKSK and four additional P. graminis f. sp. triad races: TTTTF, TRTTF, QFCSC, and MCCFC. A high frequency of the accessions (78.7% of T monococcum and 93.0% of T urartu) were resistant to P graminis f. sp. tritici race TTKSK, with infection types ranging from 0 to 2+. Among these resistant accessions, 55 T monococcum accessions (6.4% of the total) were also resistant to the other four races. Associations of resistance in T monococcum germ-plasm to different races indicated the presence of genes conferring resistance to multiple races. Comparing the observed infection type patterns to the expected patterns of known genes indicated that previously uncharacterized genes

Rouse,M. N.; Jin,Y.
Plant Disease
Year: 
2011
Volume: 
95
Issue: 
8.0
Start Page: 
941.0
Other Page(s): 
944.0

Sources of Resistance to Stem Rust Race Ug99 in Spring Wheat Germplasm

Wheat stem rust (Puccinia graminis f. sp. tritici) race TTKSK (Ug99), with virulence to the majority of the world's wheat (Triticum aestivum) cultivars, has spread from Uganda throughout eastern Africa, Yemen, and Iran. The identification and spread of variants of race TTKSK with virulence to additional stem rust resistance genes has reminded breeders and pathologists of the danger of deploying major resistance genes alone. In order to protect wheat from this rapidly spreading and adapting pathogen, multiple resistance genes are needed, preferably from improved germplasm. Preliminary screening of over 700 spring wheat breeding lines and cultivars developed at least 20 years ago identified 88 accessions with field resistance to Ug99. We included these resistant accessions in the stem rust screening nursery in Njoro, Kenya for two additional seasons. The accessions were also screened with a bulk of North American isolates of P. graminis f. sp. tritici in the field in St. Paul, MN. In order to further characterize the resistance in these accessions, we obtained seedling phenotypes for 10 races of P. graminis f. sp. tritici, including two races from the race TTKSK complex. This phenotyping led to the identification of accessions with either adult-plant or all-stage resistance to race TTKSK, and often North American races of P. graminis f. sp. tritici as well. These Ug99 resistant accessions can be obtained by breeders and introgressed into current breeding germplasm.

M. N. Rouse; R. Wanyera and P. Njau,; Y. Jin
Plant Disease
Year: 
2011
Volume: 
95
Issue: 
6
Start Page: 
762
Other Page(s): 
766

The spread of stem rust caused by Puccinia graminis f. sp tritici, with virulence on Sr31 in wheat in Eastern Africa.

Stem rust resistance in wheat cultivars with Sr31 has been effective and durable worldwide for more than 30 years. Isolates of Puccinia graminis f. sp. tritici with virulence to Sr31 were detected in Uganda in 1999

Wanyera,R.; Kinyua,M. G.; Jin,Y.; Singh,R. P.
Plant Disease
Year: 
2006
Volume: 
90
Issue: 
1.0
Start Page: 
113.0
Other Page(s): 
113.0
Expert pick: 
False

Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda

In much of the world, resistance to stem rust in wheat, caused by Puccinia graminis f. sp. tritici, is based at least in part on the gene Sr31. During February 1999, high levels of stem rust infection were observed on entries in wheat (Triticum aestivum) grown in a nursery at Kalengyere Research Station in Uganda.

Pretorius,Z. A.; Singh,R. P.; Wagoire,W. W.; Payne,T. S.
Plant Disease
Year: 
2000
Volume: 
84
Issue: 
2
Start Page: 
203.0
Other Page(s): 

Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines

Stem rust is one of the most destructive diseases of wheat worldwide. The recent emergence of wheat stem rust race Ug99 (TTKS based on the North American stem rust race nomenclature system) and related strains threaten global wheat production because they overcome widely used genes that had been effective for many years. Host resistance is likely to be more durable when several stem rust resistance genes are pyramided in a single wheat variety; however, little is known about the resistance genotypes of widely used wheat germplasm. In this study, a diverse collection of wheat germplasm was haplotyped for stem rust resistance genes Sr2, Sr22, Sr24, Sr25, Sr26, Sr36, Sr40, and 1A.1R using linked microsatellite or simple sequence repeat (SSR) and sequence tagged site (STS) markers. Haplotype analysis indicated that 83 out of 115 current wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT) likely carry Sr2. Among those, five out of 94 CIMMYT spring lines tested had both Sr2 and Sr25 haplotypes. Five out of 22 Agriculture Research Service (ARS) lines likely have Sr2 and a few have Sr24, Sr36, and 1A.1R. Two out of 43 Chinese accessions have Sr2. No line was found to have the Sr26 and Sr40 haplotypes in this panel of accessions. DArT genotyping was used to identify new markers associated with the major stem resistance genes. Four DArT markers were significantly associated with Sr2 and one with Sr25. Principal component analysis grouped wheat lines from similar origins. Almost all CIMMYT spring wheats were clustered together as a large group and separated from the winter wheats. The results provide useful information for stem rust resistance breeding and pyramiding.

Yu,Long-Xi; Liu,Sixin; Anderson,James; Singh,Ravi; Jin,Yue; Dubcovsky,Jorge; Brown-Guidera,Gina; Bhavani,Sridhar; Morgounov,Alexey; He,Zhonghu; Huerta-Espino,Julio; Sorrells,Mark
Molecular Breeding
Year: 
2010
Volume: 
26
Issue: 
4
Start Page: 
667
Other Page(s): 
680

Genetic mapping of the stem rust (Puccinia graminis f. sp tritici Eriks. & E. Henn) resistance gene Sr13 in wheat (Triticum aestivum L.)

Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is known for its high virulence variability and ability to evolve new virulence to resistance genes. Thus, pyramiding of several resistance genes in a single line is the best strategy for a sustainable control of wheat stem rust. Sr13 is one of the few resistance genes that are effective against wide ranging P. graminis f. sp. tritici races, including the pestilent race Ug99. Its effectiveness to Ug99 makes it a valuable source for resistance to stem rust. Molecular markers play a pivotal role in the genetic characterization of the new sources of resistance as well as in stacking two or more resistance genes in a single line. Therefore, the aim of this study was to develop molecular markers for Sr13 facilitating efficient pyramiding of Sr genes. Based on the 158 F(2) individuals derived from a cross of Khapstein/9*LMPG x Morocco and SSR analyses, the Sr13 locus was mapped on chromosome 6A of wheat, and a genetic map comprising about 90 cM was constructed with the closest marker barc37 being located 4.0 cM distally of Sr13. Of the nine mapped markers, barc37 amplified an allele specific for the presence of Sr13 as shown by testing different cultivars and breeding lines. These newly developed markers will increase the efficiency of incorporating Sr13 into cultivars that are widely adopted, but susceptible to hazardous Ug99 and/or assist for the development of new elite lines that are resistant to Ug99.

Admassu,B.; Perovic,D.; Friedt,W.; Ordon,F.
Theoretical and Applied Genetics
Year: 
2011
Volume: 
122
Issue: 
3
Start Page: 
643.0
Other Page(s): 
648.0

Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp durum L.)

Wheat stem rust caused by Puccinia graminis f. sp. tritici, can cause significant yield losses. To combat the disease, breeders have deployed resistance genes both individually and in combinations to increase resistance durability. A new race, TTKSK (Ug99), identified in Uganda in 1999 is virulent on most of the resistance genes currently deployed, and is rapidly spreading to other regions of the world. It is therefore important to identify, map, and deploy resistance genes that are still effective against TTKSK. One of these resistance genes, Sr13, was previously assigned to the long arm of chromosome 6A, but its precise map location was not known. In this study, the genome location of Sr13 was determined in four tetraploid wheat (T. turgidum ssp. durum) mapping populations involving the TTKSK resistant varieties Kronos, Kofa, Medora and Sceptre. Our results showed that resistance was linked to common molecular markers in all four populations, suggesting that these durum lines carry the same resistance gene. Based on its chromosome location and infection types against different races of stem rust, this gene is postulated to be Sr13. Sr13 was mapped within a 1.2-2.8 cM interval (depending on the mapping population) between EST markers CD926040 and BE471213, which corresponds to a 285-kb region in rice chromosome 2, and a 3.1-Mb region in Brachypodium chromosome 3. These maps will be the foundation for developing high-density maps, identifying diagnostic markers, and positional cloning of Sr13.

Simons,K.; Abate,Z.; Chao,S. M.; Zhang,W. J.; Rouse,M.; Jin,Y.; Elias,E.; Dubcovsky,J.
Theoretical and Applied Genetics
Year: 
2011
Volume: 
122
Issue: 
3
Start Page: 
649.0
Other Page(s): 
658.0

An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat

The stem rust resistance gene Sr2 has provided broad-spectrum protection against stem rust (Puccinia graminis Pers. f. sp. tritici) since its wide spread deployment in wheat from the 1940s. Because Sr2 confers partial resistance which is difficult to select under field conditions, a DNA marker is desirable that accurately predicts Sr2 in diverse wheat germplasm. Using DNA sequence derived from the vicinity of the Sr2 locus, we developed a cleaved amplified polymorphic sequence (CAPS) marker that is associated with the presence or absence of the gene in 115 of 122 (95%) diverse wheat lines. The marker genotype predicted the absence of the gene in 100% of lines which were considered to lack Sr2. Discrepancies were observed in lines that were predicted to carry Sr2 but failed to show the CAPS marker. Given the high level of accuracy observed, the marker provides breeders with a selection tool for one of the most important disease resistance genes of wheat.

Mago,R.; Brown-Guedira,G.; Dreisigacker,S.; Breen,J.; Jin,Y.; Singh,R.; Appels,R.; Lagudah,E. S.; Ellis,J.; Spielmeyer,W.
Theoretical and Applied Genetics
Year: 
2011
Volume: 
122
Issue: 
4
Start Page: 
735.0
Other Page(s): 
744.0

Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust

The emergence of a new highly virulent race of stem rust (Puccinia graminis tritici), Ug99, rapid evolution of new Ug99 derivative races overcoming resistance of widely deployed genes, and spread towards important wheat growing areas now potentially threaten world food security. Exploiting novel genes effective against Ug99 from wild relatives of wheat is one of the most promising strategies for the protection of the wheat crop. A new source of resistance to Ug99 was identified in the short arm of the Aegilops searsii chromosome 3S(s) by screening wheat- Ae. searsii introgression libraries available as individual chromosome and chromosome arm additions to the wheat genome. For transferring this resistance gene into common wheat, we produced three double-monosomic chromosome populations (3A/3S(s), 3B/3S(s) and 3D/3S(s)) and then applied integrated stem rust screening, molecular maker analysis, and cytogenetic analysis to identify resistant wheat-Ae. searsii Robertsonian translocation. Three Robertsonian translocations (T3AL center dot 3S(s)S, T3BL center dot 3S(s)S and T3DL center dot 3S(s)S) and one recombinant (T3DS-3S(s)S center dot 3S(s)L) with stem rust resistance were identified and confirmed to be genetically compensating on the basis of genomic in situ hybridization, analysis of 3A, 3B, 3D and 3S(s)S-specific SSR/STS-PCR markers, and C-banding. In addition, nine SSR/STS-PCR markers of 3S(s)S-specific were developed for marker-assisted selection of the resistant gene. Efforts to reduce potential linkage drag associated with 3S(s)S of Ae. searsii are currently under way.

Liu,W. X.; Jin,Y.; Rouse,M.; Friebe,B.; Gill,B.; Pumphrey,M. O.
Theoretical and Applied Genetics
Year: 
2011
Volume: 
122
Issue: 
8
Start Page: 
1537.0
Other Page(s): 
1545.0
Expert pick: 
False

Pages

Subscribe to stem rust