stem rust

Displaying 41 - 50 of 80

Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar Arina

The identification of new sources of adult plant resistance (APR) and effective combinations of major and minor genes is well appreciated in breeding for durable rust resistance in wheat. A QTL, QSr.sun-5BL, contributed by winter wheat cultivar Arina providing 12–15 % reduction in stem rust severity, was reported in an Arina/Forno recombinant inbred line (RIL) population. Following the demonstration of monogenic segregation for APR in the Arina/Yitpi RIL population, the resistance locus was formally named Sr56. Saturation mapping of the Sr56 region using STS (from EST and DArT clones), SNP (9 K) and SSR markers from wheat chromosome survey sequences that were ordered based on synteny with Brachypodium distachyon genes in chromosome 1 resulted in the flanking of Sr56 by sun209 (SSR) and sun320 (STS) at 2.6 and 1.2 cM on the proximal and distal ends, respectively. Investigation of conservation of gene order between the Sr56 region in wheat and B. distachyon showed that the syntenic region defined by SSR marker interval sun209-sun215 corresponded to approximately 192 kb in B. distachyon, which contains five predicted genes. Conservation of gene order for the Sr56 region between wheat and Brachypodium, except for two inversions, provides a starting point for future map-based cloning of Sr56. The Arina/Forno RILs carrying both Sr56 and Sr57 exhibited low disease severity compared to those RILs carrying these genes singly. Markers linked with Sr56 would be useful for marker-assisted pyramiding of this gene with other major and APR genes for which closely linked markers are available.

Urmil Bansal, Harbans Bariana, Debbie Wong, Mandeep Randhawa, Thomas Wicker, Matthew Hayden, Beat Keller
Theoretical and Applied Genetics
Year: 
2014
Expert pick: 
False

Seedling resistance to stem rust race Ug99 and marker analysis for Sr2, Sr24 and Sr31 in South African wheat cultivars and lines

The appearance and spread of races of Puccinia graminis f. sp. tritici with virulence for the Sr31 resistance gene has renewed interest in breeding for durable resistance to stem rust of wheat. Since the occurrence of stem rust has been low in South Africa until the detection of race TTKSF in 2000, breeding for resistance to this disease has not been a primary objective. The aim of this study was to test bread wheat cultivars and lines at the seedling stage for their infection response to stem rust, thus determining their level of resistance or vulnerability. A collection of 65 bread wheat entries was tested with one USA race, two Eastern African races, and three South African races of P. graminis f. sp. tritici. The Eastern African and South African races all belong to the Ug99 lineage. The cultivars Duzi, Caledon, Elands, PAN 3364, PAN 3191, SST 047, SST 399, and Steenbras produced resistant infection types (IT <3) to all races. The molecular marker Sr24#50 indicated the presence of Sr24 in 12 entries. In cultivars resistant to TTTTF, TTKSF, and TTKSP but susceptible to TTKSK and PTKST, the iag95 DNA marker indicated the presence of Sr31 in five wheat lines. Using the cleaved amplified polymorphic sequence marker csSr2, Sr2 was detected in PAN 3377, Inia, and Steenbras. Few South African wheat cultivars appear to have a broad-based resistance to stem rust, as 88% of the entries were susceptible as seedlings to at least one of the races tested. Diversification of resistance sources and more directed breeding for stem rust resistance are needed in South Africa.

Pretorius, Z. A. ; Jin, Y. ; Bender, C. M. ; Herselman, L. ; Prins, R.
Euphytica
Year: 
2012
Volume: 
186
Issue: 
1
Start Page: 
15
Other Page(s): 
23

Characterization of stem rust resistance gene Sr2 in Indian wheat varieties using polymerase chain reaction (PCR) based molecular markers

Stem rust or black rust is one of the most important diseases of wheat worldwide. In India, central, peninsular and southern hill zones are particularly prone to stem rust where favourable environmental conditions exist. The recent emergence of wheat stem rust race Ug99 (TTKSK) and related strains threatens global wheat production as Ug99 overcome resistance gene Sr31 effective for many years. Resistance gene Sr2, derived from cultivar 'Hope' is responsible for slow rusting and providing partial but durable resistance against stem rust of wheat. In addition to other unknown minor genes ( Sr2 complex), this gene tends to be non-specific and is currently effective against all isolates of Puccinia graminis tritici throughout wheat-growing regions of the world. A set of 135 bread wheat varieties developed in the last forty years for prominent northern, central, peninsular and southern hill regions of India was screened with molecular markers, CsSr2 and GWM533, developed and identified for Sr2 gene. Out of 135 varieties screened, 92 confirmed the presence of Sr2 gene at molecular level. The molecular information of Sr2 gene was corroborated with the available morphological marker data for selected varieties to evaluate the efficacy of these molecular markers in Indian wheat germplasm. It was observed that these two molecular markers in combination provide accuracy in 92% lines for this gene at molecular level with presumed Sr2 status in Indian wheat varieties. It is proposed that the use of CsSr2 and GWM533 will help in gene pyramiding of Sr2 along with other stem rust resistance genes in future wheat varieties to accelerate Indian breeding program for rust resistance.

Rekha Malik ; Shabana Parveen ; Saharan, M. S. ; Rajendra Kumar ; Sharma, A. K. ; Bhardwaj, S. C. ; Indu Sharma
African Journal of Biotechnology
Year: 
2013
Volume: 
12
Issue: 
18
Start Page: 
2352
Other Page(s): 
2359

Races of Puccinia graminis f. sp tritici with Combined Virulence to Sr13 and Sr9e in a Field Stem Rust Screening Nursery in Ethiopia

North American durum lines, selected for resistance to TTKSK (Ug99) and related races of Puccinia graminis f. sp. tritici in Kenya, became susceptible in Debre Zeit, Ethiopia, suggesting the presence of stem rust races that were virulent to the TTKSK-effective genes in durum. The objective of this study was to characterize races of P. graminis f. sp. tritici present in the Debre Zeit, Ethiopia stem rust nursery. Three races of P. graminis f. sp. tritici were identified from 34 isolates: JRCQC, TRTTF, and TTKSK. Both races JRCQC and TRTTF possess virulence on stem rust resistance genes Sr13 and Sr9e, which may explain why many TTKSK-resistant durum lines tested in Kenya became susceptible in Debre Zeit. The Sr9e-Sr13 virulence combination is of particular concern because these two genes constitute major components of stem rust resistance in North American durum cultivars. In addition to Sr9e and Sr13 virulence, race TRTTF is virulent to at least three stem rust resistance genes that are effective to race TTKSK, including Sr36, SrTmp, and resistance conferred by the 1AL.1RS rye translocation. Race TRTTF is the first known race with virulence to the stem rust resistance carried by the 1AL.1RS translocation, which represents one of the few effective genes against TTKSK in winter wheat cultivars in the United States. Durum entries exhibiting resistant to moderately susceptible infection response at the Debre Zeit nursery in 2009 were evaluated for reaction to races JRCQC, TRTTF, and TTKSK at the seedling stage. In all, 47 entries were resistant to the three races evaluated at the seedling stage, whereas 26 entries exhibited a susceptible reaction. These results suggest the presence of both major and adult plant resistance genes, which would be useful in durum-wheat-breeding programs. A thorough survey of virulence in the population of P. graminis f. sp. tritici in Ethiopia will allow characterization of the geographic distribution of the races identified in the Debre Zeit field nursery.

Olivera, P. D.; Jin, Y.; Rouse, M.; Badebo, A.; Fetch, T., Jr.; Singh, R. P.; Yahyaoui, A.
Plant Disease
Year: 
2012
Volume: 
96
Issue: 
5
Start Page: 
623
Other Page(s): 
628
Expert pick: 
False

Development and validation of molecular markers linked with stem rust resistance gene Sr13 in durum wheat

Stem rust resistance gene Sr13, found frequently in tetraploid wheats, was tested effective against Puccinia graminis f. sp. tritici pathotype Ug99 (TTKSK) and its derivatives. It remains a candidate for developing new cultivars with diverse combinations of stem rust resistance genes. To combine Sr13 with other genes that produce a similar phenotype, linked markers would be required. We used the AFLP approach to identify markers linked closely with Sr13. The STS marker AFSr13, derived from an AFLP fragment, mapped at 3.4–6.0 cM proximal to Sr13 across three mapping populations. Marker dupw167, previously reported to be linked with Sr13, mapped 2.3–5.7 cM distal to Sr13 in four F3 populations. Marker gwm427 mapped proximal to AFSr13 in two populations, and these markers were monomorphic on one population each. The map order dupw167Sr13AFSr13gwm427 was deduced from the recombination data. Markers dupw167 and AFSr13 were validated on 21 durum wheat genotypes. Combination of dupw167 and AFSr13 would facilitate marker-assisted selection of Sr13 in segregating populations. At the hexaploid level, only gwm427 showed polymorphism and differentiated the presence of Sr13 in 10 of the 15 backcross derivatives carrying Sr13 from their Sr13-lacking recurrent parents.

Periyannan, Sambasivam K.; Qamar, Zia U.; Bansal, Urmil K.; Bariana, Harbans S.
Crop & Pasture Science
Year: 
2014
Volume: 
65
Start Page: 
74
Other Page(s): 
79

High-density mapping of a resistance gene to Ug99 from the Iranian landrace PI 626573

Managing wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is imperative for the preservation of global food security. The most effective strategy is pyramiding several resistance genes into adapted wheat cultivars. A search for new resistance sources to Pgt race TTKSK resistance identified a spring wheat landrace, accession PI 626573, as a potentially novel source of resistance. A cross was made between LMPG-6, a susceptible spring wheat line, and PI 626573 and used to develop a recombinant inbred population to map the resistance. Bulk segregant analysis (BSA) of LMPG-6/PI 626573 F2 progeny determined resistance was conferred by a single dominant gene given the provisional designation SrWLR. The BSA identified nine microsatellite (SSR) markers on the long arm of chromosome 2B associated with the resistant phenotype. Fifteen polymorphic SSRs, including the nine identified in the BSA, were used to produce a linkage map of chromosome 2B, positioning SrWLR in an 8.8 cM region between the SSRs GWM47 and WMC332. This region has been reported to contain the wheat stem rust resistance genes Sr9 and SrWeb, the latter conferring resistance to Pgt race TTKSK. The 9,000 marker Illumina Infinium iSelect SNP assay was used to further saturate the SrWLR region. The cosegregating SNP markers IWA6121, IWA6122, IWA7620, IWA8295, and IWA8362 further delimited the SrWLR region distally to a 1.9 cM region. The present study demonstrates the iSelect assay to be an efficient tool to delimit the region of a mapping population and establish syntenic relationships between closely related species.

Jason D. Zurn, Maria Newcomb, Matthew N. Rouse, Yue Jin, Shiaoman Chao, Jinita Sthapit, Deven R. See, Ruth Wanyera, Peter Njau, J. Michael Bonman, Robert Brueggeman, Maricelis Acevedo
Molecular Breeding
Year: 
2014
Expert pick: 
False

Identification of Wheat Gene Sr35 That Confers Resistance to Ug99 Stem Rust Race Group

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating disease that can cause severe yield losses. A previously uncharacterized Pgt race, designated Ug99, has overcome most of the widely used resistance genes and is threatening major wheat production areas. Here, we demonstrate that the Sr35 gene from Triticum monococcum is a coiled-coil, nucleotide-binding, leucine-rich repeat gene that confers near immunity to Ug99 and related races. This gene is absent in the A-genome diploid donor and in polyploid wheat but is effective when transferred from T. monococcum to polyploid wheat. The cloning of Sr35 opens the door to the use of biotechnological approaches to control this devastating disease and to analyses of the molecular interactions that define the wheat-rust pathosystem.

Cyrille Saintenac, Wenjun Zhang, Andres Salcedo, Matthew N. Rouse, Harold N. Trick, Eduard Akhunov, Jorge Dubcovsky
Science
Year: 
2013
Volume: 
341
Issue: 
6147
Start Page: 
783
Other Page(s): 
786
Expert pick: 
False

The Gene Sr33, an Ortholog of Barley Mla Genes, Encodes Resistance to Wheat Stem Rust Race Ug99

Wheat stem rust, caused by the fungus Puccinia graminis f. sp. tritici, afflicts bread wheat (Triticum aestivum). New virulent races collectively referred to as “Ug99” have emerged, which threaten global wheat production. The wheat gene Sr33, introgressed from the wild relative Aegilops tauschii into bread wheat, confers resistance to diverse stem rust races, including the Ug99 race group. We cloned Sr33, which encodes a coiled-coil, nucleotide-binding, leucine-rich repeat protein. Sr33 is orthologous to the barley (Hordeum vulgare) Mla mildew resistance genes that confer resistance to Blumeria graminis f. sp. hordei. The wheat Sr33 gene functions independently of RAR1, SGT1, and HSP90 chaperones. Haplotype analysis from diverse collections of Ae. tauschii placed the origin of Sr33 resistance near the southern coast of the Caspian Sea.

 

Sambasivam Periyannan, John Moore, Michael Ayliffe, Urmil Bansal, Xiaojing Wang, Li Huang, Karin Deal, Mingcheng Luo, Xiuying Kong, Harbans Bariana, Rohit Mago, Robert McIntosh, Peter Dodds, Jan Dvorak, Evans Lagudah
Science
Year: 
2013
Volume: 
341
Issue: 
6147
Start Page: 
786
Other Page(s): 
788
Expert pick: 
False

Microsatellite markers linked to stem rust resistance allele Sr9a in wheat

Host resistance to stem rust of wheat (Triticum aestivum L.), caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn., is more effective and durable when several stem rust resistance (Sr) genes are pyramided into a single line. We studied the Sr9a allele, one of six known alleles at the Sr9 locus on chromosome 2BL, using 116 F-2 plants and their F-2:3 families derived from the cross of near-isogenic lines (NILs) 'Chinese Spring' and ISr9a-Ra. Four microsatellite markers were identified that mapped within 3.6 cM proximal to the Sr9a locus. Fifty-nine wheat accessions were screened with the three codominant and one dominant markers to determine their polymorphism information content (PIC). The marker Xgwm47 revealed 12 alleles and had the highest PIC value of 0.85. We attempted to postulate the presence of Sr9a by phenotypic screening. In accessions that had multiple Sr genes, however, it was not possible to postulate Sr9a due to masking effects. Despite the ambiguity of phenotypic evaluation, Xgwm47 was diagnostic for Sr9a in additional NILs tested. These results suggest that Xgwm47 will be a useful tool for marker-assisted selection of Sr9a in wheat breeding programs.

Tsilo,Tol J.; Jin,Yue; Anderson,James A.
Crop Science
Year: 
2007
Volume: 
47
Issue: 
5.0
Start Page: 
2013.0
Other Page(s): 
2020.0

Molecular Mapping of Stem-Rust-Resistance Gene Sr40 in Wheat

Stem rust, caused by Puccinia graminis f. sp. tritici, was historically one of the most destructive diseases of wheat (Triticum, aestivum L.) worldwide. Deployment of resistant cultivars successfully prevented rust epidemics over the past several decades. Unfortunately, race TTKS (termed Ug99) has emerged in Africa to render several stem-rust-resistance genes ineffective. Sr40, a stem-rust-resistance gene from Triticum timopheevii ssp. armeniacum, was transferred to wheat on translocation chromosome T2BL/2G#2S and provides effective levels of seedling and adult plant resistance against Ug99. Two mapping populations were developed using Ug99-resistant line RL6088 and moderately susceptible to susceptible hard winter wheat cultivars Lakin and 2174. The parents were screened with 83 simple sequence repeats (SSR) from chromosome 2B and the polymorphic markers were analyzed on F(2) populations. F(2) and F(2:3) populations were inoculated with North American stem rust race RKQQ at the seedling stage. Marker locus Xwmc344 was most closely linked to Sr40 (0.7 cM) in the RL6088/Lakin linkage map, followed by Xwmc474 and Xgwm374. Marker locus Xwmc474 was mapped similar to 2.5 cM proximal to Sr40 in the RL6088/2174 population. Xwmc474 and Xwmc661 flanked Sr40 in both populations. Markers linked to Sr40 will be useful for marker-assisted integration and pyramiding of Sr40 into elite wheat breeding lines, and reduction in the size of the T timopheevii segment harboring this gene.

Wu,S. Y.; Pumphrey,M.; Bai,G. H.
Crop Science
Year: 
2009
Volume: 
49
Issue: 
5
Start Page: 
1681.0
Other Page(s): 
1686.0

Pages

Subscribe to stem rust