TTKSK

Displaying 1 - 4 of 4

Vulnerability of Barley to African Pathotypes of Puccinia graminis f.sp.tritici and Sources of Resistance

The emergence of widely virulent pathotypes (e.g., TTKSK in the Ug99 race group) of the stem rust pathogen (Puccinia graminis f.sp. tritici) in Africa threatens wheat production on a global scale. Although intensive research efforts have been advanced to address this threat in wheat, few studies have been conducted on barley, even though pathotypes such as TTKSK are known to attack the crop. The main objectives of this study were to assess the vulnerability of barley to pathotype TTKSK and identify possible sources of resistance. From seedling evaluations of more than 1,924 diverse cultivated barley accessions to pathotype TTKSK, more than 95% (1,844) were found susceptible. A similar high frequency (910 of 934 = 97.4%) of susceptibility was found for the wild progenitor (Hordeum vulgare subsp. spontanewn) of cultivated barley. Additionally, 55 barley lines with characterized or putative introgressions from various wild Hordeum spp. were also tested against pathotype TTKSK but none was found resistant. In total, more than 96% of the 2,913 Hordeum accessions tested were susceptible as seedlings, indicating the extreme vulnerability of the crop to the African pathotypes of P. graminis f. sp. tritici. In total, 32 (1.7% of accessions evaluated) and 13 (1.4%) cultivated and wild barley accessions, respectively, exhibited consistently highly resistant to moderately resistant reactions across all experiments. Molecular assays were conducted on these resistant accessions to determine whether they carried rpg4/Rpg5, the only gene complex known to be highly effective against pathotype TTKSK in barley. Twelve of the 32 (37.5%) resistant cultivated accessions and 11 of the 13 (84.6%) resistant wild barley accessions tested positive for a functional Rpg5 gene, highlighting the narrow genetic base of resistance in Hordeum spp. Other resistant accessions lacking the rpg4/Rpg5 complex were discovered in the evaluated germplasm and may possess useful resistance genes. Combining rpg4/Rpg5 with resistance genes from these other sources should provide more durable resistance against the array of different virulence types in the Ug99 race group.

B. J. Steffenson, A. J. Case, Z. A. Pretorius, V. Coetzee, F. J. Kloppers, H. Zhou, Y. Chai, R. Wanyera, G. Macharia, S. Bhavani, and S. Grando
Phytopathology
Year: 
2017
Volume: 
107
Issue: 
8
Start Page: 
950
Other Page(s): 
962
Expert pick: 
False
Rust race: 
Month Posted: 

Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis

Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.

Guotai Yu, Nicolas Champouret, Burkhard Steuernagel, Pablo D. Olivera, Jamie Simmons, Cole Williams, Ryan Johnson, Matthew J. Moscou, Inmaculada Hernández-Pinzón, Phon Green, Hanan Sela, Eitan Millet, Jonathan D. G. Jones, Eric R. Ward, Brian J. Steffenson, Brande B. H. Wulff
Theoretical and Applied Genetics
Year: 
2017
Volume: 
130
Issue: 
6
Start Page: 
1207
Other Page(s): 
1222
Expert pick: 
False
Rust race: 
Month Posted: 

Physical mapping of DNA markers linked to stem rust resistance gene Sr47 in durum wheat

In durum wheat (Triticum turgidum subsp. durum), the gene Sr47 derived from Aegilopsspeltoides conditions resistance to race TTKSK (Ug99) of the stem rust pathogen (Puccinia graminis f. sp. tritici). Sr47 is carried on small interstitial translocation chromosomes (Ti2BL-2SL-2BL·2BS) in which the Ae. speltoides chromosome 2S segments are divided into four bins in genetic stocks RWG35, RWG36, and RWG37. Our objective was to physically map molecular markers to bins and to determine if any of the molecular markers would be useful in marker-assisted selection (MAS). Durum cultivar Joppa was used as the recurrent parent to produce three BC2F2 populations. Each BC2F2 plant was genotyped with markers to detect the segment carrying Sr47, and stem rust testing of BC2F3 progeny with race TTKSK confirmed the genotyping. Forty-nine markers from published sources, four new SSR markers, and five new STARP (semi-thermal asymmetric reverse PCR) markers, were evaluated in BC2F2 populations for assignment of markers to bins. Sr47 was mapped to bin 3 along with 13 markers. No markers were assigned to bin 1; however, 7 and 13 markers were assigned to bins 2 and 4, respectively. Markers Xrwgs38a, Xmag1729, Xwmc41, Xtnac3119, Xrwgsnp1, and Xrwgsnp4 were found to be useful for MAS of Sr47. However, STARP markers Xrwgsnp1 and Xrwgsnp4 can be used in gel-free systems, and are the preferred markers for high-throughput MAS. The physical mapping data from this study will also be useful for pyramiding Sr47 with other Sr genes on chromosome 2B.

Daryl L. Klindworth, Jyoti Saini, Yunming Long, Matthew N. Rouse, Justin D. Faris, Yue Jin, Steven S. Xu
Theoretical and Applied Genetics
Year: 
2017
Volume: 
130
Issue: 
6
Start Page: 
1135
Other Page(s): 
1154
Expert pick: 
False
Rust race: 
Month Posted: 

Molecular Mapping of Stem Rust Resistance Loci Effective Against the Ug99 Race Group of the Stem Rust Pathogen and Validation of a Single Nucleotide Polymorphism Marker Linked to Stem Rust Resistance Gene Sr28

Wheat landrace PI 177906 has seedling resistance to stem rust caused by Puccinia graminis f. sp. tritici races TTKSK, TTKST, and BCCBC and field resistance to the Ug99 race group. Parents, 140 recombinant inbred lines, and 138 double haploid (DH) lines were evaluated for seedling resistance to races TTKSK and BCCBC. Parents and the DH population were evaluated for field resistance to Ug99 in Kenya. The 90K wheat single nucleotide polymorphism (SNP) genotyping platform was used to genotype the parents and populations. Goodness-of-fit tests indicated that two dominant genes in PI 177906 conditioned seedling resistance to TTKSK. Two major loci for seedling resistance were consistently mapped to the chromosome arms 2BL and 6DS. The BCCBC resistance was mapped to the same location on 2BL as the TTKSK resistance. Using field data from the three seasons, two major QTL were consistently detected at the same regions on 2BL and 6DS. Based on the mapping result, race specificity, and the infection type observed in PI 177906, the TTKSK resistance on 2BL is likely due to Sr28. One SNP marker (KASP_IWB1208) was found to be predictive for the presence of the TTKSK resistance locus on 2BL and Sr28.

E. M. Babiker, T. C. Gordon, S. Chao, M. N. Rouse, R. Wanyera, M. Acevedo, G. Brown-Guedira, and J. M. Bonman
Phytopathology
Year: 
2017
Volume: 
107
Issue: 
2
Start Page: 
208
Other Page(s): 
215
Expert pick: 
False
Rust race: 
Month Posted: 
Subscribe to TTKSK