Sr13

Displaying 1 - 7 of 7

Pathogenic variation of Puccinia graminis f.sp. tritici in Iran during the 2016-2017 season

In recent years, wheat stem rust, caused by Puccinia graminis f.sp. tritici, has been reconsidered in Iran due to its prevalence and the emergence of the dangerous Ug99 race. This study was conducted to understand pathogenic variation in the population of P. graminis f.sp. tritici, detection of effective genes, and identification of resistance in Iranian commercial wheat cultivars or advanced lines, by planting stem rust trap nurseries under natural disease infection in several regions of Iran during the 2016-2017 cropping season. The trap nursery in each location included 48 wheat lines each carrying a single gene of stem rust (Sr) resistance, seven lines each carrying Sr multigenes, eight additional lines to confirm four Sr genes, 149 commercial wheat cultivars or advanced lines from Iran, plus several susceptible checks. The percentage leaf area affected (disease severity) and infection type were recorded at adult plant stage when disease was well developed on flag leaves of susceptible checks. Results showed presence of virulence for several Sr genes in one or more locations. However, the single genes of Sr13, Sr23, Sr24, and two complex genes of Sr7a+Sr6+Sr12 and Sr6+Sr24+Sr36+Sr1RS-Am were still effective against stem rust in all locations. The results of evaluations of commercial wheat cultivars or advanced lines showed that approximately 16% the genotypes tested including wheat cultivars Gonbad, Shiroudi, Chamran-2, Baharan, Dena, Karkheh, and Arya were resistant in all locations.

Malihipour
Seed & Plant Improvement Institute (SPII), AREEO, Karaj, Iran
Resistance Gene Tags: 
Co-authors: 
Ramin Roohparvar, Safarali Safavi, Gholamhossein Ahmadi
Poster or Plenary?: 
Poster
BGRI Year: 
2018
geographic_area: 
Primary Author First Name: 
Ali
Displayed onsite?: 
No

Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group

The Puccinia graminis f. sp. tritici (Pgt) Ug99 race group is virulent to most stem rust resistance genes currently deployed in wheat and poses a threat to global wheat production. The durum wheat (Triticum turgidum ssp. durum) gene Sr13 confers resistance to Ug99 and other virulent races, and is more effective at high temperatures. Using map-based cloning, we delimited a candidate region including two linked genes encoding coiled-coil nucleotide-binding leucine-rich repeat proteins designated CNL3 and CNL13. Three independent truncation mutations identified in each of these genes demonstrated that only CNL13 was required for Ug99 resistance. Transformation of an 8-kb genomic sequence including CNL13 into the susceptible wheat variety Fielder was sufficient to confer resistance to Ug99, confirming that CNL13 is Sr13. CNL13 transcripts were slightly down-regulated 2–6 days after Pgt inoculation and were not affected by temperature. By contrast, six pathogenesis-related (PR) genes were up-regulated at high temperatures only when both Sr13 and Pgt were present, suggesting that they may contribute to the high temperature resistance mechanism. We identified three Sr13-resistant haplotypes, which were present in one-third of cultivated emmer and durum wheats but absent in most tested common wheats (Triticum aestivum). These results suggest that Sr13 can be used to improve Ug99 resistance in a large proportion of modern wheat cultivars. To accelerate its deployment, we developed a diagnostic marker for Sr13. The identification of Sr13 expands the number of Pgt-resistance genes that can be incorporated into multigene transgenic cassettes to control this devastating disease.

Wenjun Zhanga, Shisheng Chena, Zewdie Abate, Jayaveeramuthu Nirmala, Matthew N. Rouse, Jorge Dubcovsky
Proceedings of the National Academy of Sciences (US)
Year: 
2017
Volume: 
114
Issue: 
45
Start Page: 
E9483
Other Page(s): 
E9492
Expert pick: 
False
Month Posted: 

Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group

The Puccinia graminis f. sp. tritici (Pgt) Ug99 race group is virulent to most stem rust resistance genes currently deployed in wheat and poses a threat to global wheat production. The durum wheat (Triticum turgidum ssp. durum) gene Sr13 confers resistance to Ug99 and other virulent races, and is more effective at high temperatures. Using map-based cloning, we delimited a candidate region including two linked genes encoding coiled-coil nucleotide-binding leucine-rich repeat proteins designated CNL3 and CNL13. Three independent truncation mutations identified in each of these genes demonstrated that only CNL13 was required for Ug99 resistance. Transformation of an 8-kb genomic sequence including CNL13 into the susceptible wheat variety Fielder was sufficient to confer resistance to Ug99, confirming that CNL13 is Sr13. CNL13 transcripts were slightly down-regulated 2–6 days after Pgt inoculation and were not affected by temperature. By contrast, six pathogenesis-related (PR) genes were up-regulated at high temperatures only when both Sr13 and Pgt were present, suggesting that they may contribute to the high temperature resistance mechanism. We identified three Sr13-resistant haplotypes, which were present in one-third of cultivated emmer and durum wheats but absent in most tested common wheats (Triticum aestivum). These results suggest that Sr13 can be used to improve Ug99 resistance in a large proportion of modern wheat cultivars. To accelerate its deployment, we developed a diagnostic marker for Sr13. The identification of Sr13 expands the number of Pgt-resistance genes that can be incorporated into multigene transgenic cassettes to control this devastating disease.

Wenjun Zhang, Shisheng Chen, Zewdie Abate, Jayaveeramuthu Nirmala, Matthew N. Rouse, Jorge Dubcovsky
Proceedings of the National Academy of Sciences (US)
Year: 
2017
Expert pick: 
False
Month Posted: 

Races of Puccinia graminis f. sp tritici with Combined Virulence to Sr13 and Sr9e in a Field Stem Rust Screening Nursery in Ethiopia

North American durum lines, selected for resistance to TTKSK (Ug99) and related races of Puccinia graminis f. sp. tritici in Kenya, became susceptible in Debre Zeit, Ethiopia, suggesting the presence of stem rust races that were virulent to the TTKSK-effective genes in durum. The objective of this study was to characterize races of P. graminis f. sp. tritici present in the Debre Zeit, Ethiopia stem rust nursery. Three races of P. graminis f. sp. tritici were identified from 34 isolates: JRCQC, TRTTF, and TTKSK. Both races JRCQC and TRTTF possess virulence on stem rust resistance genes Sr13 and Sr9e, which may explain why many TTKSK-resistant durum lines tested in Kenya became susceptible in Debre Zeit. The Sr9e-Sr13 virulence combination is of particular concern because these two genes constitute major components of stem rust resistance in North American durum cultivars. In addition to Sr9e and Sr13 virulence, race TRTTF is virulent to at least three stem rust resistance genes that are effective to race TTKSK, including Sr36, SrTmp, and resistance conferred by the 1AL.1RS rye translocation. Race TRTTF is the first known race with virulence to the stem rust resistance carried by the 1AL.1RS translocation, which represents one of the few effective genes against TTKSK in winter wheat cultivars in the United States. Durum entries exhibiting resistant to moderately susceptible infection response at the Debre Zeit nursery in 2009 were evaluated for reaction to races JRCQC, TRTTF, and TTKSK at the seedling stage. In all, 47 entries were resistant to the three races evaluated at the seedling stage, whereas 26 entries exhibited a susceptible reaction. These results suggest the presence of both major and adult plant resistance genes, which would be useful in durum-wheat-breeding programs. A thorough survey of virulence in the population of P. graminis f. sp. tritici in Ethiopia will allow characterization of the geographic distribution of the races identified in the Debre Zeit field nursery.

Olivera, P. D.; Jin, Y.; Rouse, M.; Badebo, A.; Fetch, T., Jr.; Singh, R. P.; Yahyaoui, A.
Plant Disease
Year: 
2012
Volume: 
96
Issue: 
5
Start Page: 
623
Other Page(s): 
628
Expert pick: 
False

Development and validation of molecular markers linked with stem rust resistance gene Sr13 in durum wheat

Stem rust resistance gene Sr13, found frequently in tetraploid wheats, was tested effective against Puccinia graminis f. sp. tritici pathotype Ug99 (TTKSK) and its derivatives. It remains a candidate for developing new cultivars with diverse combinations of stem rust resistance genes. To combine Sr13 with other genes that produce a similar phenotype, linked markers would be required. We used the AFLP approach to identify markers linked closely with Sr13. The STS marker AFSr13, derived from an AFLP fragment, mapped at 3.4–6.0 cM proximal to Sr13 across three mapping populations. Marker dupw167, previously reported to be linked with Sr13, mapped 2.3–5.7 cM distal to Sr13 in four F3 populations. Marker gwm427 mapped proximal to AFSr13 in two populations, and these markers were monomorphic on one population each. The map order dupw167Sr13AFSr13gwm427 was deduced from the recombination data. Markers dupw167 and AFSr13 were validated on 21 durum wheat genotypes. Combination of dupw167 and AFSr13 would facilitate marker-assisted selection of Sr13 in segregating populations. At the hexaploid level, only gwm427 showed polymorphism and differentiated the presence of Sr13 in 10 of the 15 backcross derivatives carrying Sr13 from their Sr13-lacking recurrent parents.

Periyannan, Sambasivam K.; Qamar, Zia U.; Bansal, Urmil K.; Bariana, Harbans S.
Crop & Pasture Science
Year: 
2014
Volume: 
65
Start Page: 
74
Other Page(s): 
79

Genetic mapping of the stem rust (Puccinia graminis f. sp tritici Eriks. & E. Henn) resistance gene Sr13 in wheat (Triticum aestivum L.)

Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is known for its high virulence variability and ability to evolve new virulence to resistance genes. Thus, pyramiding of several resistance genes in a single line is the best strategy for a sustainable control of wheat stem rust. Sr13 is one of the few resistance genes that are effective against wide ranging P. graminis f. sp. tritici races, including the pestilent race Ug99. Its effectiveness to Ug99 makes it a valuable source for resistance to stem rust. Molecular markers play a pivotal role in the genetic characterization of the new sources of resistance as well as in stacking two or more resistance genes in a single line. Therefore, the aim of this study was to develop molecular markers for Sr13 facilitating efficient pyramiding of Sr genes. Based on the 158 F(2) individuals derived from a cross of Khapstein/9*LMPG x Morocco and SSR analyses, the Sr13 locus was mapped on chromosome 6A of wheat, and a genetic map comprising about 90 cM was constructed with the closest marker barc37 being located 4.0 cM distally of Sr13. Of the nine mapped markers, barc37 amplified an allele specific for the presence of Sr13 as shown by testing different cultivars and breeding lines. These newly developed markers will increase the efficiency of incorporating Sr13 into cultivars that are widely adopted, but susceptible to hazardous Ug99 and/or assist for the development of new elite lines that are resistant to Ug99.

Admassu,B.; Perovic,D.; Friedt,W.; Ordon,F.
Theoretical and Applied Genetics
Year: 
2011
Volume: 
122
Issue: 
3
Start Page: 
643.0
Other Page(s): 
648.0

Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp durum L.)

Wheat stem rust caused by Puccinia graminis f. sp. tritici, can cause significant yield losses. To combat the disease, breeders have deployed resistance genes both individually and in combinations to increase resistance durability. A new race, TTKSK (Ug99), identified in Uganda in 1999 is virulent on most of the resistance genes currently deployed, and is rapidly spreading to other regions of the world. It is therefore important to identify, map, and deploy resistance genes that are still effective against TTKSK. One of these resistance genes, Sr13, was previously assigned to the long arm of chromosome 6A, but its precise map location was not known. In this study, the genome location of Sr13 was determined in four tetraploid wheat (T. turgidum ssp. durum) mapping populations involving the TTKSK resistant varieties Kronos, Kofa, Medora and Sceptre. Our results showed that resistance was linked to common molecular markers in all four populations, suggesting that these durum lines carry the same resistance gene. Based on its chromosome location and infection types against different races of stem rust, this gene is postulated to be Sr13. Sr13 was mapped within a 1.2-2.8 cM interval (depending on the mapping population) between EST markers CD926040 and BE471213, which corresponds to a 285-kb region in rice chromosome 2, and a 3.1-Mb region in Brachypodium chromosome 3. These maps will be the foundation for developing high-density maps, identifying diagnostic markers, and positional cloning of Sr13.

Simons,K.; Abate,Z.; Chao,S. M.; Zhang,W. J.; Rouse,M.; Jin,Y.; Elias,E.; Dubcovsky,J.
Theoretical and Applied Genetics
Year: 
2011
Volume: 
122
Issue: 
3
Start Page: 
649.0
Other Page(s): 
658.0
Subscribe to Sr13