2015 BGRI Poster Abstracts

Please use the search boxes on the left navigation to search for poster abstracts by specific words in the title or the abstract, by theme, or by keyword.

Displaying 331 - 340 of 415

Occurrence of the Warrior Race of Wheat Stripe Rust (Puccinia striiformis f. sp. tritici) in Egypt, 2015

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, [Pst] is a widespread and damaging disease of wheat (Triticum aestivum L.), causing significant losses in yield and quality. During the 2015, eight stripe rust physiological races were identified in greenhouse tests i.e. 0E0, 6E4, 70E20, 128E28, 134E244, 143E245, 250E174, and 450E214. Race 0E0 was the most common and avirulent race, and races 143E245, and 450E214 had high virulence on most of tested Yr resistance gene wheat lines. In the same season, an unusual stripe rust infection occurred in spring wheat at Sakha region in Egypt. Some of the most important commercial cultivars such as (Misr 2, Giza 168 and Sakha 61), known as resistant to the previously characterized races of Pst in Egypt have become susceptible under field conditions. Infections of stripe rust was observed on some wheat lines with Yr genes previously known to be resistant, such as Yr1, Yr17 and Yr32, in a yellow-rust trap nursery at Sakha (30.601400? N, 31.510383? E), northern Egypt. Independent race analysis of collected samples from four governorates i.e. Kafrelsheikh, Al-Sharqia, Dakahleia and Damietta at Sakha Agricultural Research Station in Kafrelsheikh confirmed the detection of a new Pst race in Egypt. Aggressive races with virulence to Yr27 were detected on differentials with Yr27 (Yr27/6*Avocet S), and (Ciano 97) during the 2012 in Egypt. In addition, the Warrior race (virulent on: Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, Yr32, and YrSp) was observed in the 2015 crop season, which indicated continued changes in the Pst the population. In Europe, the Warrior race first identified in 2011 in the United Kingdom, has caused significant change in yellow rust susceptibility of several varieties of both wheat and triticale. In a conclusion, some of wheat cultivars, known to be resistant, were shifted to susceptible due to these new races.

Primary Author: Shahin, Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Egypt.

Keywords: stripe rust, virulence, race analysis

Genetic characterization of wheat for adult plant response against rust infestation under water deficit conditions

Different biotic and abiotic stresses are hampering wheat yield across different geographic regions. Among biotic stresses, wheat rusts are principal cause of yield reduction. Whereas among abiotic stresses, drought is the principle cause of reduction in growth and lowering yield potential. So developing rust resistance and drought tolerance in wheat germplasm is needed, which requires assessment of genetic potential of current cultivars against these stresses to identify variation among existing germplasm. Screening of genotypes under naturally prevailing races of rust species is the better and inexpensive approach. In the present study 65 genotypes including five checks (AARI-11, Chakwal- 50, Aas- 11, Morocco and Galaxy-13) were evaluated for adult plant response to wheat rusts and water deficit conditions. Experimental material was planted in four blocks each having new entries along with repetition of five checks in augmented design. Data was recorded on morphological traits including plant height, peduncle length, spike length, productive tillers per meter, flag leaf area, number of spikelet per spike, grains per spike, single head weight, 1000 grain weight, days to maturity and grain yield per acre. Significant variation was observed among genotypes for all the studied traits. On the basis of performance G39 and G36 were better than commercial drought check Chakwal-50 in almost all the traits. However rust screening under natural rust infestation revealed that although Morocco showed susceptible (S) response yet only six genotypes were susceptible to yellow rust whereas all others were resistant. In case of leaf rust 29 were completely resistance, 25 were moderately resistant, seven were moderately susceptible and only four were completely susceptible to currently active races of leaf rust. However, in the case of stem rust, 61 genotypes showed complete resistance to stem rust, two showed moderately resistance and two were moderately susceptible. Information obtained from this study would be favorable for breeding rust resistant and drought tolerant cultivars.

Primary Author: Shahzad, Ayub Agricultural Research Institute, Faisalabad

Keywords: leaf rust, stem rust

Large scale wheat stem rust outbreaks in Western Siberia / Northern Kazakhstan in 2015-2017

Short season, high latitude spring wheat is grown on 7 million ha in Western Siberia and 10 million ha in Northern Kazakhstan. Despite relatively low wheat yields (1.5 t/ha), the region is extremely important for regional and global food security. Leaf rust dominates, occurring three years out of five, especially in favorable years with higher rainfall. Since 2010, stem rust has been observed at an increasing number of sites. The first large-scale stem rust outbreak occurred in 2015 and affected about 0.5-1 million ha in Omsk, Western Siberia. In 2016, 2 million ha were affected in the Omsk and Altay regions, while 1 million ha in the Kostanay and Northern Kazakhstan regions were affected in 2017. Estimated yield losses reached 25-35% each year. Factors associated with the outbreaks included: higher rainfall in late June and July; cultivation of susceptible varieties; and an increased area planted to winter wheat, which serves as a source of inoculum. Sampling and race analysis revealed a diverse pathogen population, indicative of a sexual recombination. A total of 51 races were identified from 31 samples taken in 2015 and 2016. All races were avirulent on Sr31. The majority of varieties released and cultivated in the region are susceptible to stem rust and require replacing. A recent study of 150 local resistant varieties and breeding lines indicated that the genetic basis of resistance was limited to Sr25, Sr31, Sr36, Sr6Ai, Sr6Ai#2, and additional unknown major genes. Adult-plant resistance to stem rust was observed in less than 20% of the germplasm. The potential impact of these large stem rust outbreaks on other wheat growing regions is being investigated by analyzing spore wind dispersal patterns. Further research is required to understand and mitigate the sudden appearance of stem rust as a disease of economic importance.
Study at Omsk State Agrarian University was supported by the Russian Science Foundation (project No. 16-16-10005).

Primary Author: Shamanin, Omsk State Agricultural University, Omsk, Russia

Keywords: spring wheat, stem rust, breeding

Suitability of planting time to get iron and zinc enriched wheat varieties

Globally, more than two billion people are undernourished in the world and deficient in key vitamins and minerals, making it the world's greatest health risk factor. Among these, iron and zinc are of greater significance from human nutrition perspective, ranking them 5th and 6th in developing countries. The population most vulnerable to these micronutrient deficiencies is women and children. Iron deficiency results about 1.62 billion people as anemic, largely preschool children (47%). It is responsible for approximately 20854 deaths and two million disability adjusted life years (DALYs) among children under five years old, whereas, zinc deficiency is responsible for approximately 4% of deaths and 16 million DALYs, among children under age five. This leads to malnutrition ultimately leading to a disabled society.
Widespread accessibility of these nutrients is the solution to cater malnutrition. Wheat, the "staff of life," consumed by masses can help eradicate "hidden hunger." For this, fortification and bio-fortification are highly talked about, but one having limitations in reaching the masses and other a long term intervention, respectively, suitability of planting times to screen out varieties high in zinc and iron, is an on-field solution. In a study, wheat varieties; Punjab-11, Millat-11 and Galaxy-13 were selected from three planting times, with an interval of one month. Results reveal varieties exhibited their natural genotypic response but planting time impact on Zn and Fe were visibly significant. 30th December gave higher contents of Fe and Zn as compared to previous planting dates of the same year. Iron on an overall basis ranged from (135.0-147.0) ppm, while Zinc gave a confined range of (30.2-33.2) ppm. Thus, concluded that comparatively delayed sowing favours the mineral content concentration in wheat grains. And these creamed out varieties can readily be used in crosses with high yielding varieties, in order to make our wheat mineral sufficient.

Primary Author: Shamim, Cereal Laboratory, Wheat Research Institute, Faisalabad, Punjab, Pakistan


Myo-inositol phosphate synthase as a molecular switch influencing plant growth and immunity via ethylene and brassinosteroid

L-myo-inositol phosphate synthase (MIPS; EC have been involved in abiotic stress tolerance and its disruption leads to spontaneous cell death and enhanced tolerance to pathogen. However, its molecular mechanism underlying role of MIPS in growth, immunity and abiotic stress tolerance remains unknown. To delve deeper into the conserved molecular mechanism of MIPS action during growth and stress condition, we characterized the overexpression transgenic of TaMIPS and mutant lines of AtMIPS1. Subsequent, transcriptome analysis revealed the activation of ET/JA dependent immune response in transgenic and SA defense response in mutant. Pull-down analysis revealed the interaction of TaMIPS2 with ethylene synthesis (ACO) and signaling protein (CTR1) component. Due to the established role of ethylene during the skotomorphogenesis, we investigated the effect of myo-inositol phosphate synthase role in ethylene response during hook formation. Our results thus suggest the requirement of MIPS for ethylene response and regulating the growth and immunity.

Primary Author: Sharma, Department of Plant Molecular Biology, University of Delhi South Campus


Mining novel seedling stripe rust resistance from Vavilov's wheat landraces using conventional and modern genetic tools

Wheat is one of the most important staple food and agricultural crop cultivated worldwide. To meet the demands of the raising human population, global wheat production has to be increased which is however declined due to appearance of highly virulent strains of Puccinia striiformis f. sp. tritici (Pst) fungus causing stripe rust disease. Globally, the incidence of stripe rust is effectively managed through the deployment of host plant mediated genetic resistance. But as the resistance present in the current wheat cultivars are ineffective, new sources of resistance particularly from pathogen unexposed genetic resources are of urgent need to prevent stripe rust epidemics. Landrace collections with rich genetic diversity and being less exposed to prevalent pathogen are of valuable source for resistance to new pathogens. In this study, a total of 295 landrace accessions collected by the famous Russian botanist Vavilov was screened for stripe rust resistance using the two predominant lineage Pst strains of Australia. Six accessions with good resistance against the two aggressive Pst strains were selected for genetic characterization and for utilization in global wheat breeding. Characterisation of these novel resistance were undertaken using combination of conventional and advanced genetic tools. While the conventional approach involves the traditional map based gene cloning, the other tool is the recently identified rapid method based on mutagenesis, targeted gene capture and next generation sequencing called "MutRenSeq". Subsequently, the identified novel resistant traits were transferred into elite wheat cultivars through the combination of linked molecular markers and speed breeding techniques. Thus along with the identification of novel resistance, elite wheat cultivars with broad spectrum stripe rust resistance were also generated through the use state of art techniques to sustain global wheat production from the rapidly evolving stripe pathogens.

Primary Author: Sharma, QAAFI, The University of Queensland


Unraveling the entry mechanism of oomycete and fungal effector proteins into host cells

Oomycetes and fungi facilitate pathogenesis via secretion of effector proteins that have apoplastic and intracellular localizations. These effector proteins have a diverse array of functions that aid in pathogenesis, including modification of defense responses. In the oomycetes, well characterized effector proteins that can translocate into the host cells share a pair of conserved N-terminal motifs known as RXLR and dEER. The RXLR motif has been shown to mediate translocation of the oomycete avirulence proteins Avr1b and Avr3a into host cells. Detailed mutagenesis of the RXLR motif of Avr1b revealed that the motif is tolerant to several amino acid substitutions while retaining functional translocation activity, resulting in the definition of a broadened RXLR-like motif, [R,K,H] X[L/M/I/F/Y/W]X. This motif has been used to identify functional translocation motifs in several fungal effector proteins, AvrL567, Avr2, and AvrLm6. Effectors with both RXLR and RXLR-like motifs bind phosphatidylinositol- 3-phosphate (PI-3-P) to mediate translocation via lipid raft mediated endocytosis. Mutations in RXLR or RXLRlike motifs result in loss of phospholipid binding and translocation by effectors. Effector entry into plant cells can be blocked by proteins and inositides that disrupt binding to PI-3-P, suggesting effector-blocking technologies that could be used in agriculturally important plant species.

Primary Author: Shiv D. Kale, Virginia Bioinformatics Institute, Virginia Tech University, USA


Screening introduced wheat germplasm for resistance to stem rust in Georgia

Stem rust is a major threat to wheat production in Georgia. Breeding for resistance to the rusts is a major strategy for wheat improvement programs. Our objective was determination of the stem rust resistance levels in entries of the 4nd International Winter Wheat Stem Rust Resistance Nursery. Responses of 85 varieties/lines were evaluated in an inoculated field nursery. A coefficient of infection (CI) and area under the disease progress curve (AUDPC) were estimated for each entry. Fifteen entries (T03/17, TAM-107/T21, SD92107-2/SD99W042, KS95U522/TX95VA0011/F1/JAGGER, AR800-1-3-1/NW97S320, FL9547/NC00-14622, FL9547/TX00D1626, TAM302/KS93U450, MCCORMİCK/TREGO, NC00-14622/2137, TAM200/KAUZ//GOLDMARK/3/BETTY, KS920709-B-5-1-1/BURBOT-4, AFINA SOMNEZ, TAM200/KAUZ/4/BEZ/NAD//KZM(ES85.24/3/F900K) were resistant; 39 showed moderate resistance; 15 were scored MR-MS and 17 were moderately susceptible. Most of entries had very low CI (0.2 - 0.5) and AUPDC (less than 10.0); the best including T07/08, T07/09, T08/02, T08/01, T08/02, T08/04, CAKET/PEHLIVAN, ID800994.W/VEE//PIOPIO/3/MNCH/4/FDL4/KAUZ, PBI1013.13.3/3233.35 /3/STAR//KAUZ/STAR, DULGER-1//VORONA/BAU, ZANDER-17/3/YE2453/KA//1D13.1/MLT, 55-1744/7C//SU/RDL/3/CROW/4/MILAN/5/ITOR, 1D13.1/MLT//TUI/3/S?NMEZ/4/ATAY/GALVEZ87, TAM107//ATAY/GALVEZ87, HBF0290/X84W063-9-39-2//ARH/3/LE2301, STAR/BWD/3/PRL/VEE#6//CLMS, FRTL//AGRI/NAC/3/KALYOZ-17, CV. RODİNA/AE.SPELTOİDES10 KR, TAM 107//ATAY/ GALVEZ87, and 06393GP1. The severities for susceptible entries varied from 20 to 70%, with checks Morocco and Bezostaya 1 at 80% and 60%, respectively.  However, the majority of entries (94%) had average CI of 0.2 - 20 and five entries with CI 21 - 40 had high to moderate levels of resistance.

Primary Author: Sikharulidze, Institute of Phytopathology and Biodiversity, Batumi Shota Rustaveli State University, Georgia

Keywords: Georgia, resistance, stem rust

Genome-wide association mapping for wheat leaf rust resistance in Uruguay

Breeding for durable leaf rust resistance is a priority for our breeding programs; however, the availability of new resistance genes is a limiting factor. Two spring wheat populations totaling 186 lines derived from three resistant donors and two Uruguayan susceptible cultivars were used to detect genomic regions associated with seedling and field resistance to LR in Uruguay. AUDPC were recorded in three environments in the 2012 and 2013 cropping seasons, and seedling responses were determined using three Puccinia triticina races. The lines were also genotyped using GBS. A total of 5,222 SNP markers were used for genome-wide association analysis. Molecular markers were used to genotype APR genes Lr34 and Lr68. We identified 43 SNP markers significantly associated with seedling resistance and 19 for field resistance on chromosomes 1A, 1B, 1D, 2B, 2D, 3A, 4A, 5B, 6B, 7A, 7B and 7D. We confirmed the presence of Lr10 and Lr16 in seedling tests and Lr34 and Lr68 in field tests. Novel genomic regions were identified on chromosomes 4A associated with APR, and 5B associated with seedling resistance. These new resistance genes will be useful in breeding for durable LR resistance.

Primary Author: Silva, National Institute of Agricultural Research (INIA), La Estanzuela Experimental Station, Uruguay

Keywords: Uruguay, leaf rust, molecular markers

Characterization of a diverse South American wheat panel to identify new leaf rust and stem rust resistance genes

Leaf rust (LR) and stem rust (SR) are threats to global wheat production and new races frequently overcome resistance genes deployed in wheat cultivars. Identification of new sources of resistance is a major goal for many pre-breeding programs. The objective of this study was to investigate the genetic basis of resistance to LR and SR in a diverse South American wheat panel. Molecular markers for known resistance genes and GBS were used to dissect genetic components. The wheat panel of 122 lines was characterized under field conditions at La Estanzuela Research Station, Uruguay, for disease severity (DS) to LR (2014 and 2015) and SR (2015), and LTN (leaf tip necrosis). Final DS for LR ranged between 0 and 95%, with mean values of 40% (2014) and 46% (2015). For SR, final DS ranged between 0 and 50%, with a mean value of 5%. The frequencies of positive diagnostic resistance markers among accessions were 20.5% for Lr34/Sr57, 6.6% for Lr68, 3.3% for Sr2/Lr27, 23% for Sr31/Lr26, 20.5% for Sr24/Lr24, 9.4% for Sr25/Lr19, and 0% for Sr39/Lr35. Of all the LR/SR resistance genes, only the effect of Lr68 was significant when predicting LR DS. Seventeen lines were identified with combinations of two genes, but no combination conferred a significantly improved level of resistance. Preliminary GWAS analysis for LR response on a subset of 86 lines revealed several QTLs, with a major QTL explained by Lr68. Lines with good levels of resistance to LR and SR, high expression of LTN, and absence of markers for the studied resistance genes were identified, indicating that there are other genes involved in resistance. Future research involving the testing of additional molecular markers for other known resistance genes, and a deeper GWAS analysis, will provide further information about the resistance genes present in this wheat panel.

Primary Author: Silva, INIA Uruguay and Dep. Plant Pathology, Kansas State University, US

Keywords: QTL, association mapping