mapping

Displaying 1 - 3 of 3

Triticum araraticum: A source of leaf rust and stripe rust resistance genes

Stripe rust and leaf rust are two most widely distributed diseases of wheat despite the fact that major emphasis has been made globally to develop rust resistant varieties. The wild tetraploid wheat Triticum araraticum (AAGG) evolved in the eastern part of Fertile Crescent is a source of useful traits for the improvement of wheat including resistance to disease. T. araraticum acc. pau4692 and a derived advanced backcross introgression line (IL) in susceptible T. durum cv. Malvi local background showed high level of seedling resistance against Indian pathotypes of leaf rust and stripe rust. The F5 Single seed descent (SSD) population developed from the crosses between T. araraticum IL with T. durum cultivar PBW114 was screened with commonly prevalent pathotypes of leaf rust and stripe rust in India at the seedling stage. The genetic analysis indicated that the leaf rust resistance is conditioned by two genes and stripe rust resistance by a single gene. The SSR markers mapped on A and B genome were used for parental polymorphism along with resistant and susceptible bulks for leaf rust and polymorphic markers between bulks were used on the whole population. The molecular marker data using single marker analysis showed that leaf rust resistance genes were mapped on chromosome 2A and 7A linked to SSR markers Xwmc149 and Xbarc49, respectively. The genes have been temporarily named as LrAr1 and LrAr2. Bulked segregant analysis (BSA) for mapping stripe rust resistance is in progress.

Singh
School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana-141004 India
Co-authors: 
Ahmed Elkot, Satinder Kaur, Parveen Chhuneja
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Rohtas
Displayed onsite?: 
No

Mapping of all-stage leaf rust resistance genes in Triticum dicoccoides derived recombinant inbred line (RIL)

Leaf rust caused by Puccinia triticina is one of the most historical and economically important wheat diseases. Breeding for new cultivars with effective gene combinations is the most promising approach for reducing losses due to leaf rust. Wild emmer wheat, Triticum dicoccoides, the progenitor of modern tetraploid and hexaploid wheats, is an important resource for new variability for disease resistance genes. An accession of T. dicoccoides acc. pau4656 showed resistance against prevailing leaf rust races in India, when tested at the seedling and adult plant stage. The introgression line, developed from the cross of the leaf rust resistant T. dicoccoides acc. pau4656 and the susceptible T. durum cultivar Bijaga yellow, was crossed with T. durum cultivar PBW114 to generate recombinant inbred lines (RIL) for mapping leaf rust resistance gene(s). RIL population was screened against highly virulent leaf rust race 77-5 at seedling stage and inheritance analyses revealed the segregation of two leaf rust resistance genes. The genes have been temporarily designated as LrD1 and LrD2. A set of 387 SSR marker was used for bulked segregant analysis (BSA). The markers showing diagnostic polymorphism in the resistant and susceptible bulks were amplified on whole of the population. Single marker analysis using MapDisto software placed LrD1 on the long arm of chromosome 6A linked to the SSR marker Xwmc256 and LrD2 on long arm of chromosome 2A close to the SSR marker Xwmc632. T. durum cv. PBW114 used in the present study was also resistant to leaf rust at the seedling stage. So one of these leaf rust resistance genes might have been contributed by the PBW114 and other by T. dicoccoides. The current study identified valuable leaf rust resistance genes for deployment in wheat breeding programme.

Elkot
School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana-141004 India
Keywords: 
Co-authors: 
Rohtas,Singh, Satinder, Kaur, Parveen, Chhuneja, , , , , , , , , , , , , , , , , , , , , , , ,
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Ahmed

Utilizing biparental and association mapping techniques to identify leaf rust resistance in diverse wheat accessions

Leaf rust is common in wheat worldwide, consistently reducing yields by 5-15% or more.  Fungicides are applied to U.S. spring wheat to mitigate crop losses, but combinations of resistance genes can provide less expensive, effective control. We use biparental and association mapping approaches to identify resistance genes in two Minnesota varieties and 3,000 diverse global lines. Six populations developed from selected National Small Grains Collection lines were evaluated for seedling resistance, which has been mapped using bulk segregant analysis.  Two populations were developed to map adult plant resistance using recombinant inbred lines. Leveraging large association mapping panels can identify novel variants from the diverse NSGC lines.   The results will identify successful gene combinations underlying durable resistance and associated genetic markers. We will explore the utility of association mapping to identify leaf rust resistance genes and evaluate the global distribution of leaf rust resistance to inform worldwide wheat improvement.

Turner
Department of Agronomy and Plant Genetics, University of Minnesota, USA
Primary Author Email: 
mkathryn.turner@gmail.com
Subscribe to mapping