genetic diversity

Displaying 1 - 2 of 2

Genetic diversity for rust resistance among Nordic spring wheat cultivars

Wild relatives, landraces and cultivars from different geographical regions are demonstrated sources of resistance to wheat rusts. Identification, characterisation and provision of diverse sources of rust resistance to Australian wheat breeding companies form a key component of the Australian Cereal Rust Control Program. This study was planned to assess diversity of resistance to the three rusts among a set of Nordic spring wheat cultivars. These cultivars were tested at the seedling stage with several pathotypes of each rust pathogen. Stem rust resistance genes Sr7b, Sr8a, Sr12, Sr15, Sr17, Sr23 and Sr30 and leaf rust resistance genes Lr1, Lr3a, Lr13, Lr14a, Lr16 and Lr20 were postulated either singly or in various combinations. A high proportion of cultivars were identified to carry Sr15/Lr20 presumably due to earlier selection, or fixation, of Pm1 in breeding populations. Seedling test data using five Pst pathotypes did not allow postulation of genes present in a many cultivars because of a widely effective single gene or overlapping effectiveness of two or more resistance genes. Stripe rust resistance gene Yr27 was postulated in five cultivars. The presence of Yr1 in one cultivar was predicted by amplification of the linked marker allele. Eighteen, 47 and 32 cultivars showing seedling susceptibility, respectively, to stem rust, leaf rust and stripe rust were tested under field conditions to identify sources of adult plant resistance (APR). Cultivars possessing APR to all three or to two rusts were identified. Molecular markers linked to APR genes Lr34/Yr18/Sr57, Lr68, and Sr2 detected the likely presence of these genes in some cultivars.

Randhawa
The University of Sydney Plant Breeding Institute, Australia
Primary Author Email: 
m.randhawa@cgiar.org

Genetic diversity among Puccinia graminis f. sp. secalis and winter rye populations

Rye stem rust (caused by Puccinia graminis f. sp. secalis, Pgs) causes considerable yield losses in rye crops grown in continental climates. In Germany, stem rust resistance in rye has attracted little attention until now. In order to implement resistance breeding, it is of utmost importance to (1) analyze Pgs populations in terms of diversity and pathotype distribution, and (2) identify resistance sources in winter rye populations. Within a three-year research project, we analyzed 389 single-pustule-isolates, collected mainly from German rye-growing areas, on 15 rye inbred differentials with different avirulence/virulence patterns; among them, 226 pathotypes were identified and only 56 occurred more than once. The majority of isolates infected 5-6 differentials. This high diversity was confirmed by a Simpson index of 0.99, a high Shannon index (5.27) and an evenness index of 0.97. In parallel, we investigated stem-rust resistance among and within 122 genetically heterogeneous rye populations originating from 19 countries across 3 to 15 environments (location-year combinations) in two replicates. While 7 German commercial rye populations were highly susceptible, 11 non-adapted populations, mainly from Russia, Austria and the USA, were highly resistant, harboring 32-70% resistant stems on plots averaged across 8 to 10 environments. Selections for low disease severity at the adult-plant stage in the field also displayed resistance in leaf-segment tests (r=0.86, P<0.01). In conclusion, rye stem rust pathogen populations are highly diverse and the majority of resistances in rye populations are race-specific. The new Pgs isolate set firstly developed within the project covers the current spectrum of virulences and can be used to assess the effectiveness of stem rust resistance genes or sources. New pathotypes can be detected using this differential set and farmers and industry can be alerted to circumvent economic damage. In the long term, resistances from non-adapted populations should be introgressed into commercial rye cultivars.

Flath
Julius Kuehn-Institut, Institute of Plant Protection in Field Crops and Grassland, Germany
Primary Author Email: 
kerstin.flath@jki.bund.de
Subscribe to genetic diversity