bread wheat

Displaying 1 - 10 of 13

GENETIC MAPPING OF SEEDLING AND ADULT PLANT RESISTANCE FOR STRIPE RUST IN SPRING BREAD WHEAT (TRITICUM AESTIVUM L.)

Stripe rust caused by Puccinia striiformis f.sp.tritici, is one of the major diseases of wheat in the world. Experiments were carried out at two sites in Ethiopia (Kulumsa and Meraro) during the 2015 cropping season to evaluate the response of 198 elite bread wheat genotypes and two checks to the prevailing races of stripe rust at adult plant and seedling stage. The genetic profile of these genotypes was assessed using 13006 SNP markers and an association mapping was explored to determine marker?trait association. About 72.5% and 42.5% of the lines exhibited resistance at Kulumsa and Meraro, respectively. Out of 198 genotypes tested in the greenhouse, 31% exhibited common resistance for Kubsa and mixed stripe rust isolate. Only 8966 of the SNPs were polymorphic, only these were used for association mapping analysis. These markers spanned an average density of 3.47 cM per marker, with the poorest density on the D genome. Almost half of these markers were on known chromosomes, but had no position on the consensus map of bread wheat. Analysis of population structure revealed the existence of three clusters and the estimated genomic wide Linkage Disequilibrium (LD) decay in this study ranged from 0 to 50 cM. 53 SNPs in ten genomic regions located on wheat chromosome 1AL, 2AL, 2BL, 2DL, 3BL, 4BL, 4DL, 5AS, 7AL and 7BL were identified. Thirty nine SNP markers in five genomic regions at Kulumsa and 14 SNP markers in six genomic regions at Meraro explained more than 25.5% and 35.1% of phenotypic variability respectively. For seedling stage, 21 markers in ten genomic regions located on wheat chromosomes 1B, 2A, 2B, 3A, 3B, 4B, 4D, 5A, 6B and 7B were associated with resistant. These loci may be useful for choosing parents and incorporating new resistance genes into locally adapted cultivars.

Isehtu
Ethiopian Institute of Agricultural Research (EIAR)
Poster or Plenary?: 
Poster
BGRI Year: 
2018
geographic_area: 
Primary Author First Name: 
Yewubdar
Displayed onsite?: 
No

Assessment of slow rusting of landraces of bread wheat to Puccinia striiformis f.sp. tritici under artificial field inoculation

Yellow rust caused by Puccinia striiformis f.sp. tritici, is the most devastating fungal disease of wheat, especially in CWANA region. Growing cultivars with durable resistance is the most economical control measure. A field study was conducted to evaluate 500 bread wheat landraces along with the susceptible control ?Morocco? using artificial inoculation under field conditions at Tel Hadia, Syria during 2010-11 and 2011-12 growing seasons. The most prevailing yellow rust virulent race 70E214 was used for artificial inoculation. The disease scoring started when the disease severity was more than 50 % on the leaves of the susceptible check ?Morocco? and continued for four scorings at the intervals of 7 days. Slow rusting resistance was assessed based on the development of disease over time using the Area under Disease Progress Curve (AUDPC), Coefficient of Infection (CI), Final rust Severity (FRS), Infection Rate ?(r)? and Relative Resistance Index (RRI). None of the landraces showed immune reaction and 10% showed lowest values for all parameters, suggesting that resistance in these landraces was controlled by major genes. Approximately 65% of landraces were marked as having different levels of slow rusting and 25% were highly susceptible. Cluster analysis based on partial resistance parameters revealed two major clusters: Susceptible and low level of slow rusting were grouped in the first cluster; Resistant, high level and moderate level of partial resistance were grouped in the second cluster. By comparing the results obtained from RRI and others parameters, we found that landraces with very low values for all parameters exhibited high RRI value of 9, while those that showed high, moderate and low levels of slow rusting, had RRI ranges of 8-9, 7-8 and 5-7, respectively. The landraces with maximum values from each parameter showed very low RRI values of less than 5.

Alo
ICARDA
Keywords: 
Poster or Plenary?: 
Poster
BGRI Year: 
2018
geographic_area: 
Primary Author First Name: 
Fedaa
Poster ID number: 
41
Displayed onsite?: 
No

Genetic analysis for yield and its components in Afghan bread wheat

Bread wheat is a staple food in Afghanistan. Breeding for improving yield and its components in Afghan bread wheat without using new molecular methods such as marker-assisted selection (MAS) and quantitative trait loci (QTL) mapping approaches is difficult. Therefore study of genetic analysis by focus on yield and its components as first steps is necessary. Genetic analyses were performed on a winter wheat core collection of 20 accessions and commercial varieties sampled from different regions of Afghanistan and twenty agronomic traits were evaluated over three years under fully irrigated, rain-fed and drought treatments. Grain yield was the most important trait to water deficit and was highly correlated with other agronomic traits. The germplasm was structured into two sub-populations. Field plots of the genotypes were treated to one of three treatments including full irrigation, rain supplied and rain-sheltered. A randomized complete block design with three replicate was used every year of the trial. For every agronomic trait, variance components, heritability (h2) and genetic correlations was calculated. Results of the study showed that these genotypes may be good source for national breeding programs. The multiple statistical in this study showed that results of genetics correlation and regression analysis are same. Further analysis of these traits with additional experimental data to attain persuasive conclusion is suggested.

Sadeqi
Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-University of Bonn
Keywords: 
Co-authors: 
Mohammad Wali,Salari, Kobra, Yusefi, Mohammad, Yusefi, Gul Mohammad, Ajir, Wakil Ahmad, Sarhadi, Jens, L?on, , , , , , , , , , , , , , , , , ,
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Mohammad Bahman

Changes of some physiological parameters of different wheat genotypes in ontogenesis depending on infection of leave level

Rust diseases are considered the main stress factors that limit wheat productivity in the Azerbaijan. The studies on the impact of rust diseases on physiological processes at reproductive vegetation period is of very importance with view of evaluating size of yield and quality of the studied genotypes. For this purpose the studies focused on bread wheat genotypes (Triticum aestivum L.), which differ sharply by architectonics, biological peculiarities and resistance to rust diseases. Comparative evaluation of the studied genotypes by physiological and quality parameters has been undertaken in two options: over plants infected with diseases in natural background, and over healthy plants (fungicide sprayed plants). Area of photosynthesis apparatus of leaf story (18,3-50,2 sm2) of the studied wheat genotypes changes in wide interval. Infestation level of leaves with yellow rust (Puccinia striiformis West.) in wheat genotypes grown in natural infection background fluctuates between 5MS-40S in ontogenesis, but between 10MS-90S with brown rust (Puccinia recondita Desm.).
High level of infection with rust diseases leads to reduced size of leaf assimilation area and defoliation. Reduction of these dimensions makes up 10-90% in lower story leaves of genotypes infected with rust diseases, but 20-30% in upper story leaves. Genotypes with large and bending leaves subject to this disease more frequently. Value of photosynthesis intensity in ontogenesis at upper story leaves of the genotypes infected with rust diseases at natural background fluctuates between 6-18 ?mol CO2 .m-2.s-1 depending on level of infection, but in healthy plants between 16-29 ?molCO2 .m-2.s-1. Negative impact of these diseases on normal course of plant physiological process ultimately causes is reflected in yield and quality parameters.

Talai
Research Institute of Crop Husbandry, Azerbaijan
Keywords: 
Co-authors: 
ATIF,ZAMANOV, Konul, Aslanova, , , , , , , , , , , , , , , , , , , , , , , , , ,
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Javanshir

Development of bread wheat cultivars for resistance to stem rust for cultivation in north zone of Iran

In this project to obtain resistant wheat breeding lines/cultivars to stem rust disease, new cultivars and lines of the north breeding program were evaluated in greenhouse with races collected in 2014 from northern regions of Iran, Moghan and Gorgan. Artificial inoculation in greenhouse indicated none of the races had virulence on Sr11, Sr13, Sr24, Sr25, Sr26, Sr27, Sr29, Sr31, Sr32, Sr33, Sr37, Sr39, Sr40, and SrTmp. In order to evaluate seedling resistance, 143 wheat cultivars and new lines under greenhouse conditions were inoculated with four isolates of stem rust in four separate experiments in a randomized complete block design with three replications. Evaluation of the northern germplasm under greenhouse conditions showed that some of the genotypes were resistant against all four isolates. The resistance of some of these new lines was also confirmed in Kenya. Regarding other desirable agronomic characteristics, some of these lines will be introduced as new cultivars in the northern region of Iran.

Khodarahmi
Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
Keywords: 
Co-authors: 
Kamal Shahbazi, Jabbar Alt Jafarby, Mohammad Sadegh Khavarinejad, Farzad Afshari, Farshad Bakhtiar, Habibollah Soghi
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
Primary Author First Name: 
Manoochehr
Poster ID number: 
315

Developing rust resistant bread wheat genotypes for warmer areas in India

The changing climatic conditions are affecting wheat production in major agro-ecological zones in India, namely, north western plains(NWPZ), north eastern plains(NEPZ), central (CZ) and peninsular zone(PZ) where the reproductive phase has to endure higher temperatures. Also, the prevalence and virulence of rust pathotypes and other diseases are affected. To address such challenges, development of wheat for climate resilience was initiated following shuttle breeding approach for incorporating heat stress tolerance as well as resistance to wheat rusts. During 2010-16, a total of 583 elite lines were evaluated against prevalent pathotypes of stripe rust 78S84, 110S119, 110S84 and 46S119; leaf rust 12-2(1R5), 12-5(29R45), 77-2(109R31-1), 77-5(121R63-1), 77-9(121R60-1) and 104-2 (21R55) and stem rust 11(79G31), 40A(62G29), 42(19G35), 122(7G11) and 117-6(37G19) of which 108 promising entries were identified. These lines were evaluated for disease response in multilocational Initial Plant Pathological Screening Nursery (IPPSN) against prevalent races of all three rusts. Based on average coefficient of infection (15.0 ACI), 42 (39%), 104 (96%) and 90(83%) entries were found resistant to different races of stripe, leaf and stem rusts, respectively. Based on performance in multiplication yield trials, 29 entries were contributed in national coordinated evaluation system on Wheat & Barley which resulted in release of four wheat cultivars DBW71(Yr9+27+,Lr26+,Sr2+5+31+), DBW107(Yr9+,Lr26+3+,Sr31+), DBW110(Yr2+, Lr13+10+,Sr13+11+) and DBW93(Yr9+, Lr26+23+, Sr31+) for commercial cultivation in NWPZ, NEPZ, CZ and PZ, respectively. These cultivars are becoming popular among farmers due to their yield advantage, resistance to diseases, tolerance to high temperature and better quality traits. Also, DBW 129 was screened in multiple disease screening nursery (MDSN) and observed resistant to all rusts, leaf blight, powdery mildew, flag smut and shoot fly. The adoption of the newly developed cultivars for deployment of differential genes for resistance would lead to reduction in disease pressure and bring higher profitability to farmers in different agro-ecological zones in India.

Singh
ICAR- Indian Institute of Wheat & Barley Research, Karnal-132001, India
Keywords: 
Co-authors: 
Vinod Tiwari, DP Singh, RP Gangwar, GP Singh
Poster or Plenary?: 
Poster
BGRI Year: 
2018
geographic_area: 
Primary Author First Name: 
Sanjay Kumar
Displayed onsite?: 
No

Defining efficient phenotypic and genetic selection criteria to improve bread wheat yield under drought conditions

In the context of climate change, drought is one of the most important and complex abiotic stresses affecting crop production worldwide. The adoption of an appropriate technological package, principally drought tolerant varieties, may overcome these challenges to meet global food security needs for the rapidly growing human population, particularly in developing countries. Therefore, this research was carried out to identify efficient phenotypic and genetic selection criteria to identify drought tolerant wheat varieties. In this perspective, 200 diverse elite bread wheat lines from ICARDA and CIMMYT were evaluated under four Moroccan environments during the 2015 and 2016 seasons for yield and 15 agro-physiological traits. The same set of genotypes was genotyped using 15k SNPs. Significant environment and genotype environment interaction effects were observed for yield. Average yield reached 3.18t/ha and ranged from 2.45 to 4.27t/ha. The secondary traits were mostly dominated by the environment effect (p<0.001). Based on correlation and regression analysis between grain yield and phenotypic data, the biomass, grain number per m<sup>2</sup> and to a lesser extent fertile spikes number and thousand kernel weights (depending of drought scenarios) can be more reliable traits than yield for the identification of drought tolerant genotypes. Moreover, the ground cover and canopy temperature depression can be used as supplementary criteria for more accurate selection. Slow selection on the basis of phenotypic traits may be accelerated and improved by using molecular markers. The genetic analysis highlighted significant SNPs and identified new QTLs linked to yield and the most efficient phenotypic traits under drought conditions. These findings could be useful for breeding drought-resistant wheat cultivars using marker-assisted selection to accumulate these favorable alleles of SNPs associated with yield-related traits to increase grain yield.

Bennani
National Institute of Agricultural Research
Co-authors: 
Nsarellah Nasserlhaq, Wuletaw Tadesse, Ahmed Birouk
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Sahar
Displayed onsite?: 
No

Rust responses of some Turkish, white grained, bread wheat genotypes in preliminary yield trials

Bread wheat is the most important cereal crop in Turkey. Rusts (caused by Puccinia spp.) are the most significant diseases affecting wheat yield and quality on the Central Anatolian Plateau. The purpose of this study was to identify the reactions of 198 Turkish, white seeded, winter wheat genotypes developed by the Central Research Institute for Field Crops (CRIFC) and entered in preliminary yield trials. Adult plant and seedling tests were conducted for stripe rust whereas only seedling tests were conducted for leaf rust and stem rust. Evaluations were carried out at CRIFC, İkizce and Yenimahalle, in the 2014 season. For adult plant stripe rust assessments the materials were inoculated with a local Pst population (virulent on differentials carrying Yr2, Yr6, Yr7, Yr8, Yr9, Yr25, Yr27, YrSd, YrSu, and YrA). Stripe rust development on each entry was scored using the modified Cobb scale when the susceptible check Little Club had reached 80S in June 2014. Coefficients of infection were calculated and values below 20 were considered to be resistant. Seedlings were inoculated with local Pgt (avirulent on differentials with Sr24, Sr26, Sr27 and Sr31), Pt (avirulent on differentials with Lr9, Lr19, Lr24 and Lr28) and the Pst population. Reactions were scored for each entry at 14 days post-inoculation on standard 0-4 (LR and SR) or 0-9 (YR) scales. At the seedling stage, 56 (28%), 43 (22%), and 31 (31%) genotypes were resistant to SR, LR and YR, respectively. Eighty three (42%) lines were resistant to YR at the adult stage.

 

Akan
Central Research Institute for Field Crops, Turkey
Primary Author Email: 
kadir_akan@hotmail.com
Poster or Plenary?: 
Poster
BGRI Year: 
2015
Abstract Tags: 
geographic_area: 

Quantitative trait loci for adult plant resistance to stem rust in bread wheat cv. ‘Akuri’

Resistance is the most economically viable approach to curb the threat of rusts in wheat. The defeat of Sr31 and vulnerability of other resistance genes to the highly virulent Pgt race Ug99 and variants led to renewed efforts to discover and deploy resistance genes/QTLs in new durably resistant varieties. Akuri is a CIMMYT-developed bread wheat line exhibiting adult plant resistance (APR) in field trials in Kenya despite susceptibility to many races at the seedling stage. This study was designed to identify genomic regions contributing APR to stem rust in Akuri. One hundred and forty one RILs and parents of an F2:5 Akuri x PBW343 population were evaluated in Njoro for APR to stem rust over three seasons. Composite interval mapping was implemented on Windows QTL Cartographer to detect QTLs at a LOD threshold of 2.5 utilizing 910 high quality SNPs previously typed on the DArT-GBS platform. Preliminary QTL analyses revealed loci on chromosomes 1B, 2B and 3B consistently contributing to stem rust resistance. These QTL respectively explained ~7, 9, and 8% of the phenotypic variation. A comparison with the recently reported QTL consensus map revealed that the QTL herein discovered are probably novel. Work is underway to saturate the identified genomic regions with microsatellite markers to identify candidate, linked markers for use in marker assisted selection (MAS)

Waweru
Department of Plant Breeding and Biotechnology, University of Eldoret, Kenya
Primary Author Email: 
wawerungina@gmail.com

The bread wheat Lr34 adult plant rust resistance gene confers seedling resistance in durum wheat

The Lr34 resistance gene from Triticum aestivum encodes a putative ABC transporter protein that confers broad spectrum, partial adult plant resistance to all three rusts species and powdery mildew. It has remained a durable source of resistance for over 100 years in which time no increased virulence towards Lr34 has been observed. This gene is located on chromosome 7D and consequently cannot be readily transferred to durum wheat by traditional breeding. A transgenic approach was used to transfer Lr34 to durum wheat cultivar Stewart by Agrobacterium transformation. Homozygous progeny from a number of independent Stewart lines expressing Lr34 under regulatory control of its endogenous promoter showed high levels of rust resistance at the seedling stage. A correlation between seedling resistance and transgene expression levels was observed in these plants. In contrast seedlings from a near isogenic line of hexaploid wheat cultivar Thatcher containing Lr34 showed only a minor difference in rust growth when compared with Thatcher seedlings, typical of this adult plant resistance gene in hexaploid wheat. Little is known about how the Lr34 gene product functions; however, the seedling resistance of these durum transgenics enables functional assays to be readily undertaken without the need for adult plant material. By infecting seedlings we have shown that day length has an effect on Lr34 resistance to leaf rust, with higher levels of resistance observed under long days (16 h light) compared with short days (8 h light). This study demonstrates that Lr34 provides strong and presumably durable seedling resistance to rust in durum plants that can be used to further understand how this gene confers resistance.

Rinaldo
CSIRO Agriculture Flagship, Australia
Primary Author Email: 
amy.rinaldo@csiro.au

Pages

Subscribe to bread wheat