May 2017

Displaying 1 - 3 of 3

Fine mapping of the chromosome 5B region carrying closely linked rust resistance genes Yr47 and Lr52 in wheat

The widely effective and genetically linked rust resistance genes Yr47 and Lr52 have previously been mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population to identify markers closely linked with Yr47 and Lr52. Diverse genomic resources including flow-sorted chromosome survey sequence contigs representing the orthologous region in Brachypodium distachyon, the physical map of chromosome arm 5BS, expressed sequence tags (ESTs) located in the 5BS6-0.81-1.00 deletion bin and resistance gene analog contigs of chromosome arm 5BS were used to develop markers to saturate the target region. Selective genotyping was also performed using the iSelect 90 K Infinium wheat SNP assay. A set of SSR, STS, gene-based and SNP markers were developed and genotyped on the Aus28183/Aus27229 RIL population. Yr47 and Lr52 are genetically distinct genes that mapped 0.4 cM apart in the RIL population. The SSR marker sun180 co-segregated with Lr52 and mapped 0.4 cM distal to Yr47. In a high resolution mapping population of 600 F2 genotypes Yr47 and Lr52 mapped 0.2 cM apart and marker sun180 was placed 0.4 cM distal to Lr52. The amplification of a different sun180 amplicon (195 bp) than that linked with Yr47 and Lr52 (200 bp) in 204 diverse wheat genotypes demonstrated its robustness for marker-assisted selection of these genes.

Naeela Qureshi, Harbans Bariana, Kerrie Forrest, Matthew Hayden, Beat Keller, Thomas Wicker, Justin Faris, Elena Salina, Urmil Bansal
Theoretical and Applied Genetics
Year: 
2017
Volume: 
130
Issue: 
3
Start Page: 
495
Other Page(s): 
504
Expert pick: 
False
Month Posted: 

Tight repulsion linkage between Sr36 and Sr39 was revealed by genetic, cytogenetic and molecular analyses

Stem rust resistance genes Sr39 and Sr36 were transferred from Aegilops speltoides and Triticum timopheevii, respectively, to chromosome 2B of wheat. Genetic stocks RL6082 and RWG1 carrying Sr39 on a large and a shortened Ae. speltoides segments, respectively, and the Sr36-carrying Australian wheat cultivar Cook were used in this study. This investigation was planned to determine the genetic relationship between these genes. Stem rust tests on F3 populations derived from RL6082/Cook and RWG1/Cook crosses showed tight repulsion linkage between Sr39 and Sr36. The genomic in situ hybridization analysis of heterozygous F3 family from the RWG1/Cook population showed that the translocated segments do not overlap. Meiotic analysis on the F1 plant from RWG1/Cook showed two univalents at the metaphase and anaphase stages in a majority of the cells indicating absence of pairing. Since meiotic pairing has been reported to initiate at the telomere, pairing and recombination may be inhibited due to very little wheat chromatin in the distal end of the chromosome arm 2BS in RWG1. The Sr39-carrying large Ae. speltoides segment transmitted preferentially in the RL6082/Cook F3 population, whereas the Sr36-carrying T. timopheevii segment over-transmitted in the RWG1/Cook cross. Genotyping with the co-dominant Sr39- and Sr36-linked markers rwgs28 and stm773-2, respectively, matched the phenotypic classification of F3 families. The RWG1 allele amplified by rwgs28 was diagnostic for the shortened Ae. speltoides segment and alternate alleles were amplified in 29 Australian cultivars. Marker rwgs28 will be useful in marker-assisted pyramiding of Sr39 with other genes.

Bosco Chemaye, kUrmil K. Bansal, Naeela Qureshi, Peng Zhang, William W. Wagoire, Harbans S. Bariana
Theoretical and Applied Genetics
Year: 
2017
Volume: 
130
Issue: 
3
Start Page: 
587
Other Page(s): 
595
Expert pick: 
False
Month Posted: 

Adult plant resistance of selected Kenyan wheat cultivars to leaf rust and stem rust diseases

Phenotypic and genotypic evaluation of wheat genetic resources and development of segregating populations are pre-requisites for identifying rust resistance genes. The objectives of this study were to assess adult plant resistance (APR) of selected wheat genotypes to leaf rust and stem rust and to develop segregating populations for resistance breeding. Eight selected Kenyan cultivars with known resistance to stem rust, together with local checks were evaluated for leaf rust and stem rust resistance at seedling stage and also across several environments. Selected diagnostic markers were used to determine the presence of known genes. All eight cultivars were crossed with local checks using a bi-parental mating design. Seedling tests revealed that parents exhibited differential infection types against wheat rust races. Cultivars Paka and Popo consistently showed resistant infection types at seedling stage, while Gem, Romany, Pasa, Fahari, Kudu, Ngiri and Kariega varied for resistant and susceptible infection types depending on the pathogen race used. The control cultivars Morocco and McNair consistently showed susceptible infection types as expected. In the field, all cultivars except for Morocco showed moderate to high levels of resistance, indicating the presence of effective resistance genes. Using diagnostic markers, presence of Lr34 was confirmed in Gem, Fahari, Kudu, Ngiri and Kariega, while Sr2 was present in Gem, Romany, Paka and Kudu. Seedling resistance gene, Sr35, was only detected in cultivar Popo. Overall, the study developed 909 F6:8 recombinant inbred lines (RILs) as part of the nested mating design and are useful genetic resources for further studies and for mapping wheat rust resistance genes.

S. Figlan, T.A. Baloyi, T. Hlongoane, T.G. Terefe, H. Shimelis, T.J. Tsilo
Cereal Research Communications
Year: 
2017
Volume: 
45
Issue: 
1
Start Page: 
68
Other Page(s): 
82
Expert pick: 
False
Month Posted: 
Subscribe to May 2017