Tunisia

Displaying 1 - 3 of 3

Resistance to tan spot in Tunisian wheat landraces

In order to identify sources of resistance to tan spot caused by Pyrenophora tritici-repentis, 359 local wheat accessions were evaluated for reaction to the Oued-Mliz isolate in controlled conditions and in the field. Two and three assessments were carried out at the seedling and adult stages, respectively. There was a highly significant accession effect and 4.2% of accessions were highly resistant in both controlled conditions and the field. Assessments at the seedling stage were positively correlated with each other, and assessments in the adult stage were also positively correlated. However, assessments at the seedling stage were negatively correlated with those at the adult stage. One hundred and fifty five accessions with known origins (from 15 localities belonging to four districts) were projected on a graph defined by the two axes: reactions at the seedling stage and reactions at the adult stage. After placing the average reactions at the seedling and adult stages on the graph, four groups of accessions were obtained: accessions that were resistant to both stages, accessions that were resistant at the adult stage only, accessions that were resistant at the seedling stage only, and accessions that were susceptible at both stages. All four groups were found in each district. However, considering localities, reactions of accessions were highly variable. For example, accessions originating from Menzel Hbib were genetically variable and were represented in each of the four groups, whereas accessions from Sidi El Hani were all resistant at both stages. Further work is needed to study the genetic variability within and between localities and to better understand the resistant accessions.

Cherif
National Agronomic Institute of Tunisia
Co-authors: 
Sana Kamel, Elhem, Elfahem, Wissal Feriani, Hanen Sbei
Poster or Plenary?: 
Poster
BGRI Year: 
2018
geographic_area: 
Primary Author First Name: 
Mejda

Analysis of the resistance to Zymoseptoria tritici in a Tunisian durum wheat landraces

Septoria tritici blotch (STB) caused by the fungal pathogen Mycosphaerella graminicola (anamorph: Zymoseptoria tritici) is one of the most important foliar diseases of durum wheat (Triticum turgidum ssp. durum) in Tunisia. It attacks plants from seedling stages to maturity causing serious yield losses. Breeding for resistance to STB in durum wheat can provide an effective, economic and environmentally-safe strategy to reduce yield losses. However, this is hampered by lack of sources of resistance. In this context, a collection of 420 accessions of durum wheat from the National Bank of Gene (BNG) were evaluated for resistance to two virulent isolates of Z. tritici, namely TunBz-1 (across two environments) and TM220 (across one environment) under field conditions at three different development stages. The evaluation scale was ranged from 0% (immune plant) to 100% (100% of leave covered with symptoms). Three effects were studied on the collection: environmental effect E1-E2 (years 2016-2017), isolate effect I1-I2 (TunBz-1 and TM220) and physiological stage effect S1-S2 (seedling and adult). Results highlighted different sources of resistance between both seedling and adult stages. Moreover, 51 and 67 accessions have differential response to the two studied isolates respectively in seedling and adult stage. Furthermore, the Venn diagram has identified 23 accessions in the collection that are resistant to both isolates at both stages and that resistance was stable across environments. These accessions are located mainly in the center of Tunisia. Resistance to isolate TunBz-1 is expressed since seedling stage and there is stability of this resistance throughout the environments. The center of Tunisia seems to be a diversity center that includes different sources of resistance to STB. This collection could be the subject of a genome-wide association study (GWAS) as it presents different types of STB resistance categories that can be targeted via SNPs.

Hamza-Ben Youssef
National Institute of Agronomy of Tunisia, INAT
Co-authors: 
Maroua Ouaja, Hanen Sbei, Bochra Bahri
Poster or Plenary?: 
Poster
BGRI Year: 
2018
geographic_area: 
Primary Author First Name: 
Sonia Mihed
Displayed onsite?: 
No

Building upon past successes for a continued impact on production and food security through breeding high yielding climate change resilient durum wheat varieties

Meeting food security challenges is a high priority in many developing countries. North African countries are among those with the highest per capita wheat consumption in the world and chronic grain deficits. Climate change scenarios predict decrease of rainfall and increase of temperature with negative impact on crop production and hence food security. Along with adoption of modern technologies, breeding higher yielding and more climate change resilient wheat varieties is widely seen as a tool that can sustain past yield gains and food production increases. Durum wheat production in Tunisia greatly benefited from the green revolution ingredients. Continued breeding lead to replacement of the early semi dwarf varieties with higher yielding, better disease resistant and more drought tolerant ones that have positively impacted yield at farmer and national level. Monitoring gains from increased yield potential and resistance to the most damaging foliar diseases, mainly septoria leaf blotch, leaf rust and stripe rust, showed that grain yield of recently released varieties is up to four times that of the tall late maturing landraces grown before the 1970's and up to 2.5 times that of varieties of the early years of the green revolution. Chlorophyll content, green leaf duration, deeper root development from diverse donors including wild wheat relatives and grain yield are being integrated in the breeding program for the selection of more drought and heat stress tolerant durum cultivars

Gharbi
National Institute of Agriculture Research, Tunisia
Keywords: 
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
geographic_area: 
Primary Author First Name: 
Mohamed Salah
Poster ID number: 
96
Displayed onsite?: 
No
Subscribe to Tunisia