Resistance genes Sr2, Sr22, Sr24, Sr25 and Sr26 confer adult plant resistance to Pgt race TTKSK (=Ug99). Ten Egyptian wheat varieties and four bread wheat entries from CIMMYT were screened with five DNA markers to determine the presence of these genes, and were evaluated for stem rust response at Sakha and Sids during the successive growing seasons of 2015/16 and 2016/17. Varieties Giza 171, Sakha 94, Gemmeiza 11, and CIMMYT lines 6043, 6091, 6107 and 6197 were resistant with severities ranging from TrR to 5MR/MS. Sr2 was present in all entries; Sr24 was present in one local Egyptian cultivar (Misr2); Sr25 was present in Misr 1, Misr 2, Gemmeiza 9, Gemmeiza 11, and lines 6091 and 6197; and Sr26 was present in line 6197.
Food crisis is a major concern in Egypt, where drought and saline soils are ubiquitous. Wheat is a staple food in Egypt, which is only moderately tolerant to drought and salinity. Due to its rapidly increasing demand, there is an urgent need in Egypt to enhance wheat yields under drought and salinity conditions. Improving salinity or/and drought tolerance of genotypes is inhibited by a lack of efficient evaluation methods. High throughput precision phenotyping provides an innovative technology to screen for enhanced salt or drought tolerance from a large of number of genotypes under field conditions and can have immediate value to plant breeding. Therefore, we have tested several wheat phenotyping techniques i.e., canopy temperature (CT), spectral reflectance (SR), chlorophyll content (SPAD value), crop ground cover, relative water content (RWC), Water soluble carbohydrates (WSC), leaf area index (LAI), crop morphological traits, and grain wheat yield and yield components. We documented strong correlation/linear regression/polynomial regression between the wheat phenotyping techniques and in-season biomass/grain yield. It could be concluded that the documented results confirmed that several landraces were selected as drought/salinity tolerant out of 762 wheat landraces wheat were screened. Using high throughput precision phenotyping could provide an innovative technology and can have immediate value to plant breeding.
Stripe rust (Puccinia striiformis f. sp tritici) (Pst) infected wheat samples collected from three Egyptian Governorates (Alexandria, Beheira and Kafr-El Sheikh) were processed for race analysis to determine the race identity among the current populations of the stripe rust fungus. Single uredinial isolates were inoculated to a core set of the 17 World/European differential hosts along with wheat lines with Yr17, Yr25, Yr32. Based on virulence phenotyping, the data revealed that the current populations of Pst belong to three races: Triticale aggressive (virulent to Yr2, Yr6, Yr7, Yr8, Yr10); PstS3 (virulent to Yr2, Yr6, Yr7, Yr8, Yr25); and PstS2 (virulent to Yr2, Yr6, Yr7, Yr8, Yr9, Yr25, Yr27). No collections were found with the Warrior race, that has virulence to Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, Yr32, YrSp).
Draz
Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
Wheat stripe (Puccinia striiformis f. sp. tritici,=Pst) and stem (Puccinia graminis f. sp. tritici =Pgt) rusts are the most important wheat disease in Egypt as well as present in all wheat growing areas. This study to evaluate a set of tester lines of wheat carrying stripe Yr's, stem Sr's rust genes and selected Egyptian varieties have been studied for their response to Pst and Pgt at adult plant stage under field conditions in Sakha Agriculture Research Station, during the 2011 to 2014 growing seasons. The results revealed that stripe rust, it has been observed that the new race Yr27-virulence to Pst. In addition pathotypes were virulent for Yr2, Yr6, Yr7, Yr8, Yr9, Yr27, while Yr18 showed moderate susceptibility. On the other hand, Yr1, Yr5, Yr10, Yr15, Yr17, Yr32 and YrSP exhibited high levels of resistance. Regarding, evaluation of resistance genes sources of stem rust on ICARDA, CIMMYT wheat germplasm, and Egyptian wheat varieties released i.e. Misr1 and Misr2 which having Ug99_resistance genes Sr2 and Sr25 were found susceptible to Pgt, also Sr31 recorded infection moderately susceptible to susceptible at adult stage. Genes Sr2 complex, Sr24, Sr26, Sr27, and Sr32 were resistant at adult plant stages. The combination of Sr26 with Sr2 and Sr25 provided stem rust resistance in some CIMMYT wheat germplasm. The objectives of this work are: race analysis of wheat stem and stripe rust disease, evaluation the level and distribution of wheat stripe and stem rust in Egypt, and identification the resistance genes in commercial varieties or new promising lines using standard and molecular genetic markers. Egyptian germplasm such as Misr1, and Misr2 and others tester lines of wheat carrying stem rust Sr's were evaluative under field condition at adult stage in Egypt during 2014 growing season, Egyptian cultivars Misr1 and Misr2 were susceptible rated 10S-20S and Sr31 rated MSS. that results clearly presence a new Sr31-virulence. On other hand, genes Sr2 complex, Sr24, Sr26, Sr27 and Sr32 were resistant and combination of Sr26 with (Sr2 and Sr25) produced stem rust resistance in some CIMMYT wheat germplasm. Shahin et al., 2015, in APS Annual Meeting, Aug. 1-5, Pasadena, CA, US, (In Press).