Quantitative trait loci for adult plant resistance to stem rust in bread wheat cv. ‘Akuri’

Waweru


Department of Plant Breeding and Biotechnology, University of Eldoret, Kenya



Resistance is the most economically viable approach to curb the threat of rusts in wheat. The defeat of Sr31 and vulnerability of other resistance genes to the highly virulent Pgt race Ug99 and variants led to renewed efforts to discover and deploy resistance genes/QTLs in new durably resistant varieties. Akuri is a CIMMYT-developed bread wheat line exhibiting adult plant resistance (APR) in field trials in Kenya despite susceptibility to many races at the seedling stage. This study was designed to identify genomic regions contributing APR to stem rust in Akuri. One hundred and forty one RILs and parents of an F2:5 Akuri x PBW343 population were evaluated in Njoro for APR to stem rust over three seasons. Composite interval mapping was implemented on Windows QTL Cartographer to detect QTLs at a LOD threshold of 2.5 utilizing 910 high quality SNPs previously typed on the DArT-GBS platform. Preliminary QTL analyses revealed loci on chromosomes 1B, 2B and 3B consistently contributing to stem rust resistance. These QTL respectively explained ~7, 9, and 8% of the phenotypic variation. A comparison with the recently reported QTL consensus map revealed that the QTL herein discovered are probably novel. Work is underway to saturate the identified genomic regions with microsatellite markers to identify candidate, linked markers for use in marker assisted selection (MAS)