Progress in breeding for biofortified wheat and identification of genomic regions for enhanced grain zinc and iron in wheat

Malnutrition affects more than 2 billion people across the globe, particularly zinc and iron deficiency causes major health problem in developing world. The biofortified staple food crops such as wheat, is an important channel to contribute to the hidden hunger problem in low income countries. Breeding for enhanced zinc concentration in wheat was initiated by crossing high zinc sources identified among synthetic wheats, T. dicoccum, T. spelta and landraces. These crosses have resulted in wheat varieties with competitive yields and enhanced grain zinc were adapted by farmers in South Asia. CIMMYT-derived early-maturity wheat cultivar 'Zinc-Shakti' with about 40% increased zinc (+14 ppm), is now grown in eastern India through public-private partners. The two CIMMYT-derived biofortified varieties: 'WB2' and 'HPBW01' released in 2016 for northwestern plains zone of India. In Pakistan, 'Zincol' was released in 2016. The first high zinc wheat variety (Bari-Gom 33) with better resistance to wheat blast have been released in Bangladesh for commercial cultivation in 2017. Targeted crosses with increased population sizes were used to obtain superior progeny lines that have high zinc levels in combination with other essential traits. This has resulted in the incorporation of several novel alleles for grain zinc and iron in elite, high-yielding germplasm. High zinc and iron are under quantitative genetic control and further progress is possible as multiple QTL are pyramided in high yielding wheats. High-throughput, non-destructive phenotyping for grain zinc and iron using the X-ray fluorescence (XRF) analysis has facilitated the selection dramatically. Gene discovery and mapping studies leading to the utilization of markers to further improve the breeding efficiency. Rapid adoption of high zinc wheat varieties in South Asia and beyond is expected with the second wave of high zinc wheat lines with superior yield, heat and drought tolerance and resistance to rusts and other foliar diseases.

Govindan
CIMMYT
Keywords: 
Co-authors: 
Leonardo,Crespo-Hererra, Julio, Huerta, Ravi, Singh, , , , , , , , , , , , , , , , , , , , , , , ,
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Velu