Introgression of genes for high grain protein content (Gpc-B1) and Lr24 into leading cultivars by marker assisted backcross breeding

A wheat genotype PBW343+Gpc-B1+LR24 containing the high grain protein content (GPC) gene Gpc-B1 linked to marker Xucw108 was used as the donor parent to transfer Gpc-B1 and Lr24 into Eastern Gangetic Plains (EGP) cv. HUW234 and HUW468 that were released in 1986 and 1999, respectively. The backcrossing program involved the following steps: (i) foreground selection, (ii) marker selection, and (iii) recovery of recipient parent genome. Grain protein contents were recorded for all selected plants from the BC2F2:3 generation. The dominant marker Xucw108 was used for foreground selection, and heterozygous plants were identified through progeny testing. For RPG recovery, both genotypic and phenotypic selection was used. Introgression of the high GPC gene into the recipient background without yield loss was completed in 5 years, starting from 2009-10 (F1) and completed in 2013-14 (BC2F5). A conventional selection program would take the same time to reach BC2F5 but ensuring the transfer of GPC would not not be possible. Ten selected single plants from the BC2F3:4 generation had comparable yields of the parents with 26% higher GPC than the recurrent parent HUW 234. Eight selected plants had comparable yields and 34% higher GPC than HUW 468. Multi-row progenies (BC2F4 and BC2F5) of each selected plant were evaluated in yield traits with the donor and recipient parents as controls during 2012-13 and 2013-14. Two lines based on each recurrent parent were identified with significantly higher GPC with no yield penalty. The study reinforced the belief that MAS in combination with phenotypic selection could be a useful strategy to develop high GPC genotypes without sacrificing grain yield. These lines will be submitted to national trial where MAS derived lines require only two years of testing compared to four years for conventionally bred lines.

Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, India
Primary Author Email:
Resistance Gene Tags: 
Poster or Plenary?: 
BGRI Year: 
Abstract Tags: