Improvement of drought and salt tolerance of wheat genotypes under field conditions by high throughput precision phenotyping

Food crisis is a major concern in Egypt, where drought and saline soils are ubiquitous. Wheat is a staple food in Egypt, which is only moderately tolerant to drought and salinity. Due to its rapidly increasing demand, there is an urgent need in Egypt to enhance wheat yields under drought and salinity conditions. Improving salinity or/and drought tolerance of genotypes is inhibited by a lack of efficient evaluation methods. High throughput precision phenotyping provides an innovative technology to screen for enhanced salt or drought tolerance from a large of number of genotypes under field conditions and can have immediate value to plant breeding. Therefore, we have tested several wheat phenotyping techniques i.e., canopy temperature (CT), spectral reflectance (SR), chlorophyll content (SPAD value), crop ground cover, relative water content (RWC), Water soluble carbohydrates (WSC), leaf area index (LAI), crop morphological traits, and grain wheat yield and yield components. We documented strong correlation/linear regression/polynomial regression between the wheat phenotyping techniques and in-season biomass/grain yield. It could be concluded that the documented results confirmed that several landraces were selected as drought/salinity tolerant out of 762 wheat landraces wheat were screened. Using high throughput precision phenotyping could provide an innovative technology and can have immediate value to plant breeding.

Abdelhamid
National Research Centre
Keywords: 
Co-authors: 
Ibrahim El-Metwally
Poster or Plenary?: 
Poster
BGRI Year: 
2018
geographic_area: 
Primary Author First Name: 
Magdi
Displayed onsite?: 
No