The Lr34/Yr18 gene has been used in agriculture for more than 100 years. In contrast to many other resistance sources against leaf rust and stripe rust, it has remained effective and no virulence has been reported. This makes Lr34 a unique and highly valuable resource for rust resistance breeding. The pleiotropic nature of the gene conferring partial resistance to different pathogen species, the associated leaf tip necrosis and its durability suggest a molecular mechanism that is different from major gene resistance. This is supported by the molecular nature of Lr34 which was recently found to encode an ABC transporter. Interestingly, all tested wheat lines contain an allele of the Lr34 gene on chromosome 7DS. In its susceptible form, the gene does not confer resistance. The difference between the encoded resistant and susceptible LR34 isoforms consists of only two amino acid changes, whereas the rest of the proteins are identical. These two changes must change the biochemical properties of the resistant LR34 transporter in such a way that the plant becomes resistant. We speculate that there is a slight conformational change in the resistant form of the protein, resulting either in modified specificity or kinetics of the transported molecule, or that the binding properties to an unknown second protein interacting with LR34 are changed, resulting in altered function. While the molecular nature of the molecule(s) transported by the LR34 protein remains unclear, it is likely that a physiological change related to Lr34 activity is at the basis of resistance. We are currently establishing transgenic approaches in heterologous grass species to further investigate the molecular activity of Lr34 and to better understand a physiological mechanisms resulting in disease resistance.
How has Lr34/Yr18 conferred effective rust resistance in wheat for so long?
Complete Poster or Paper:
Poster or Plenary?:
Plenary
BGRI Year:
2012