Global status of stripe rust

Stripe rust, caused by Puccinia striiformis, has been an important disease of wheat, barley, rye, triticale and certain graminaceous hosts for centuries. The significance of the disease on cultivated cereals has waxed and waned according to the vagaries of climate, inoculum levels and susceptible varieties. A progressive understanding of pathogen biology has revealed levels of specialisation between and within host groups, and these had varying impacts on the hosts concerned. The most economically important form is P. striiformis f. sp. tritici (Pst), the causal pathogen of stripe (yellow) rust of wheat, which is the major focus of this paper. The recent discovery of the perfect stage of Pst on Berberis spp. will encourage further work to uncover the potential importance of the sexual stage in pathogen biology in regions where Berberis spp. occur. A review of the evolution of pathotypes within Pst over the past 50 years reveals recurrent pandemics emanating from a combination of specific virulence in the pathogen population, wide scale cultivation of genetically similar varieties, and agronomic practices that led to high yield potential. When these factors operate in concert, regional stripe rust epidemics have proven to be dramatic, extensive and serious in terms of the magnitude of losses and the economic hardships endured. A review of these epidemics suggests that little progress has been made in containing the worst effects of epidemics. The current status of stripe rust was gauged from a survey of 25 pathologists and breeders directly associated with the disease. It was evident that Pst remains a significant threat in the majority of wheat growing regions of the world with potential to inflict regular regional crop losses ranging from 0.1 to 5%, with rare events giving losses of 5 to 25%. Regions with current vulnerability include the USA (particularly Pacific North West), East Asia (China north-west and south-west), South Asia (Nepal), Oceania (Australia) and East Africa (Kenya). The resources deployed to contain the worst effects of Pst will need to find a balance between training a new generation of breeders and pathologists in host-pathogen genetics, and an investment in infrastructure in IARCs and NARs.

Complete Poster or Paper: 
Colin Wellings
The University of Sydney, Plant Breeding Institute, Australia
Poster or Plenary?: 
BGRI Year: 
Abstract Tags: