Our research objective is to identify new resistance genes in cultivated and wild tetraploid wheats that are effective against race TTKSK and other Pgt races, and could be utilized in durum breeding. We characterized 7,000 durum and 360 emmer accessions for field resistance at Debre Zeit, Ethiopia, and Saint Paul, Minnesota. Accessions with resistant to moderately resistant responses in multiple field evaluations were characterized at the seedling stage for resistance to races TTKSK, TRTTF, TTTTF, JRCQC, TKTTF, and an additional six representative U.S. races. We identified 208 durum and 28 emmer accessions resistant to moderately resistant in all field and seedling evaluations. A search for resistance through seedling evaluations was also conducted on wild emmer (840 accessions) and four cultivated tetraploids (Persian, Polish, Oriental, and Pollard wheats, 560 accessions). About 20% of the accessions were resistant to race TTKSK. Thirty-six resistant accessions of cultivated and wild tetraploids were selected to investigate the genetics of TTKSK and TRTTF resistance. Results from evaluating F2 and F2:3 generations from biparental crosses revealed that resistance to race TTKSK in various subspecies of T. turgidum was conferred mostly by one or two genes with dominant and recessive actions. Additional resistance genes were identified when populations were evaluated against race TRTTF. A bulk segregant analysis approach is being used to map the resistance genes in selected resistant parents using the 90K SNP platform.
Genetics of stem rust resistance in tetraploid wheats (Triticum turgidum ssp.)
Keywords: