Genetics of leaf rust and stripe rust resistance in spring wheat cultivar 'Kijil'

Leaf rust and stripe rust caused by the fungi Puccinia triticina and P. striiformis f. sp. tritici, respectively, are important diseases of wheat and represent a significant threat in most wheat producing regions worldwide. Growing resistant varieties and the identification and characterization of new sources of resistance are necessary to combat the threat from the evolving pathogen population. Bread wheat (Triticum aestivum L.) line 'Kijil' developed at CIMMYT showed adult plant resistance (APR) to leaf rust (LR) and stripe rust (YR). The genetic basis of the resistance was investigated using 198 recombinant inbred lines (RILs) derived from the cross of susceptible Apav#1 and resistant Kijil. Field phenotyping of parents and RILs were conducted at El Batón, Toluca and Ciudad Obregon, Mexico during 2016 and 2017. Pearson correlation coeffcients (P< 0.0001) were high for disease severities between two years of evaluations: LR (r= 0.90) and YR (r= 0.83). Correlations (r= 0.30-0.76) were also significant between LR and YR in all environments. Genetic analyses indicated that 3 to 5 genes of additive effects governed resistance to both rusts. RILs carrying the pleiotropic APR gene Lr46/Yr29/Sr58 showed 23 and 41% of disease severity for LR and YR respectively, whereas lines lacking it had 55 and 78% severities. RILs positive for Sr2/Yr30 showed 66% YR severity, whereas those negative displayed 78%. In addition, lines carrying the race-specific gene Yr17/Sr38 showed 28% YR severity in contrast to non-carriers that displayed 78% severity. We conclude that Kijil possesses a complex nature of resistance.

1,3 Colegio de Postgraduados-Fitosanidad, Campus Montecillo, Texcoco, 56230, Estado de M?xico, M?xico
Julio Huerta-Espino, Ravi P. Singh, Caixia Lan, Sridhar Bhavani, Reyna I. Rojas-Martínez, Ignacio Benitez-Riquelme, Cristian Nava-Díaz, Mandeep Singh Randhawa
Poster or Plenary?: 
BGRI Year: 
Primary Author First Name: 
Displayed onsite?: