Developing and optimizing markers for stem rust resistance in wheat

Long-Xi Yu

Department of Plant Breeding, Cornell University

Zewdie Abate, James A. Anderson, U.K. Bansal, H.S. Bariana, Sridhar Bhavani, Jorge Dubcovsky, Evans S. Lagudah, Sixin Liu, P.K. Sambasivam, Ravi P. Singh, and Mark E. Sorrells

High quality molecular markers that are closely linked, codominant, and high throughput are critical for developing varieties with durable rust resistance. We are using a combination of microsatellite, sequence tagged site, and Diversity Array Technology markers for haplotyping, pyramiding, and mapping stem rust resistance genes. The primary goal of our research team is to identify and optimize markers for previously characterized and novel stem rust resistance genes in wheat. The specific objectives are to: 1) optimize markers for previously characterized stem rust resistance genes to maximize efficiency of the breeding programs, 2) haplotype uncharacterized rust resistant genotypes to infer novelty and to plan new mapping experiments, 3) pyramid novel sources of rust resistance, and 4) map novel sources of rust resistance, including adult plant resistance. To date, we have evaluated 58 markers associated with 21 stem rust resistance genes and used 20 for haplotyping 318 wheat lines and varieties for 15 Ug99 effective resistance genes. This germplasm panel is also being DArT genotyped. For tetraploids, the pyramiding includes Sr2, Sr13 and Sr25 in the breeding line UC1113 which is a high yielding semi-dwarf durum variety with the high-grain protein content gene Gpc-B1 and the non-race specific stripe rust resistance gene Yr36. The Australian group is developing markers for the stem rust resistance genes Sr33 and Sr45 that come from Aegilops tauschii and are located on wheat chromosomes 1DS. Diagnostic, codominant markers for Sr25 and Sr26 have been developed and are being pyramided into CIMMYT breeding lines. Three new sources of race-specific resistance in CIMMYT-derived spring wheat have been mapped and are designated SrA, SrB, and SrC. SrA mapped on 3DL, SrB on 3BS and SrC on 5DL. These genes provided moderate levels of resistance to stem rust at the seedling stage and acceptable to moderate levels at the adult plant stage.