Cracking the codes: genetic basis of nonhost resistance of barley to heterologous rust fungi

Rients E. Niks

Wageningen University, Laboratory of Plant Breeding

H. Jafary and T.C. Marce

Full nonhost resistance can be defined as immunity, displayed by an entire plant species against all genotypes of a plant pathogen. The genetic basis of (non)host-status of plants is hard to study, since identification of the responsible genes would require interspecific crosses that suffer from sterility and abnormal segregation. There are some plant/potential pathogen combinations where only 10% or less of the accessions are at most moderately susceptible. These may be regarded as marginal host or near-nonhost, and can provide insights into the genes that determine whether a plant species is a host or a nonhost to a would-be pathogen. Barley (Hordeum vulgare L.) is a near-nonhost to several rust pathogens (Puccinia) of cereals and grasses. By crossing and selection we developed an experimental line, SusPtrit, with high susceptibility to at least nine different heterologous rust taxa such as the wheat and Agropyron leaf rusts (caused by P. triticina and P. persistens, respectively). On the basis of SusPtrit and several regular, fully resistant barley accessions, we developed mapping populations. We established that the near-nonhost resistance to heterologous rusts inherits polygenically (QTLs). The QTLs have different and overlapping specificities. In addition, an occasional R-gene is involved. In each population, different sets of loci were implicated in resistance. Very few resistance genes were common between the populations, suggesting a high redundancy in barley for resistance factors. Selected QTLs have been introduced into near-isogenic lines to be fine-mapped. Our results show that the barley- Puccinia system is ideal to investigate the genetics of host-status to specialized plant pathogens.