Breeding for climate smart bread wheat varieties

Wheat crop is facing immense losses each year owing to climate change, eventually being major threat to global food security. So, the objective of the present study was to screening of advance lines under drought and heat stress conditions. In following study, 30 advance lines of wheat along with four checks(Faislabad-08, Millat-11, Galaxy-13 and ujala16) with three treatments (heat, drought, normal) were tested for different morphological (days to heading, plant height, days to maturity, biomass,1000 grain weight and grain yield) and physiological (canopy temperature at vegetative & reproductive stage, NDVI vegetative & reproductive), parameters. Biplot analysis depicted that V2, V3, V8, V14, V19, V25, and V30 showed the highest OP vector for grain yield in drought environment. Whereas, under heat conditions, V3, V4, V5, V10, V11, and V12 displayed their maximum longest vector for grain yield. Correlation analysis depicted that grain yield had non-significant correlation with canopy temperature (vegetative stage), normalized difference vegetation index (vegetative stage) canopy temperature (reproductive stage), plant height, days to heading and days to maturity under heat stress environment, while it had significant association with biomass and thousand grain weight. Under drought environment, grain yield had positive and significant correlation with biomass while on the other hand it had negative but significant association with normalized difference vegetation index (reproductive stage) and canopy temperature (reproductive stage). Best performing lines could be efficiently exploited in research programs to evade the perilous impact of climate change.

Wheat Research Institute, Ayub Agricultural Research Institute,Faisalabad,Pakistan
Mehvish,Makhdoom, Javed, Ahmad, Makhdoom, Hussain, Iqra, Ghafoor, , , , , , , , , , , , , , , , , , , , , ,
Poster or Plenary?: 
BGRI Year: 
Primary Author First Name: