Single/multi trait genome-wide association and SNP effect estimation revealed complex architecture of rust resistance in 2300 wheat accessions
Wheat stem (Sr), leaf (Lr) and stripe (Yr) rust pathogens are among the most destructive fungal diseases threatening global wheat production. We utilized 2300 wheat accession including worldwide landraces, cultivars, breeding materials and 341 synthetic accessions backcrossed with three widely grown Australian cultivars (Annuello, Yitpi and Correll) to investigate rust resistance under wide environmental conditions. The germplasm was genotyped with 90K SNP chip, and was phenotyped for two seasons in three different environments against Sr and Lr and in four different environments against Yr. Different environments for each trait showed significant correlation with mean r values of 0.53, 0.23 and 0.66 for Lr, Sr and Yr; respectively. Single-trait genome wide association (GWAS) revealed several environment-specific QTL and multi-environmental QTL distributed on all chromosomes except 6D. Multi-trait GWAS confirmed a cluster of Yr QTL on chromosome 3B (within 8.3 cM) as well as a QTL for Sr and Lr on chromosome 3D. Linkage disequilibrium and comparative mapping showed that at least three Yr QTL exists within the 3B cluster including the durable rust resistance gene Sr2/Yr30. The same region was effective against Sr resistance but did not pass the stringent significant threshold in two environments. The 3D QTL was found mainly in the synthetic germplasm with Annuello background which is known to carry the Ag. elongatum 3D translocation carrying Sr24/Lr24 resistance gene. Interestingly, estimating the SNP effect using BayesR method showed that the correlation among the highest 5% QTL effects across environments were lower than that for the small effect QTL with differences in r values of 0.25 and 0.2 for Lr and Yr respectively. These results indicate the importance of small effect QTL that cannot be captured using GWAS in achieving durable rust resistance. The detected QTL in this study are useful resources for improving bread wheat resistance to rust diseases.