durum wheat

Displaying 1 - 9 of 9

Olivera
University of Minnesota
Co-authors: 
Ayele Badebo, Worku Bulbula, Matthew Rouse, Yue Jin
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
Primary Author First Name: 
Pablo

Our research objective is to identify new resistance genes in durum wheat that are effective against TTKSK and other significant stem rust pathogen races that could be utilized in durum breeding. We characterized 8,000 accessions for stem rust response in the field (Debre Zeit, Ethiopia, and St. Paul, MN). Accessions with resistant to moderately resistant responses in multiple field evaluations were evaluated at the seedling stage for resistance to races TTKSK, TRTTF, TTTTF, JRCQC, TKTTF, and six representative U.S. races. We identified 438 durum accessions resistant to moderately resistant in all field evaluations. Among the field-resistant accessions, 273 were resistant to all races used in seedling evaluations. Accessions susceptible at the seedling stage are being evaluated for the presence of adult plant resistance genes. The highest frequencies of resistant lines include landraces from East and North Africa (Ethiopia and Egypt) and advanced breeding lines and cultivars from North America (Mexico and USA). DNA markers will be performed to identify the presence of durum stem rust resistance genes, including Sr13, Sr8155B1, Sr11, and Sr8a. Nineteen resistant accessions were selected to investigate the genetics of TTKSK and TRTTF resistance. Results from evaluating F2 and F2:3 generations from biparental crosses revealed that resistance to race TTKSK was conferred mostly by one or two genes with dominant and recessive actions. Additional resistance genes were identified when populations were evaluated against race TRTTF. A bulk segregant analysis approach is being used to map the resistance in selected lines using the 90K SNP platform.

Nazari
Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), ICARDA, Menemen, Izmir, Turkey
Keywords: 
Co-authors: 
Muhammad Massub Tehseen, Ezgi Kurtulus, Maha Al Ahmed, Ahmed Amri, Mariana Yazbek, Ali Shehadeh
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
Primary Author First Name: 
Kumarse

In 2016 the bread wheat (BW) and durum wheat (DW) landrace accessions were evaluated against PstS2 and in 2017 against a mixture of PstS2 and warrior race in field inoculations at Izmir precision stripe rust phenotyping platform. Inoculation was carried out three times during seedling, tillering and booting stages using mixture of fresh spore and talcum powder. Adult-plant responses of tested accessions were recorded according to 0-9 scale once the flag leaf of the susceptible cultivar became fully susceptible. During 2016, out of 3319 BW accessions, 1135 (36%), 871 (28%) and 1133 (36%) were found resistant (1-3 scale), moderately resistant (4-6), and susceptible (7-9) to PstS2, respectively. Amongst the resistant accessions in 2016, 1043 (33%) remained resistant while 786 (25%) showed moderate resistant and 1310 (42%) became susceptible. In 2017, 43% of moderately resistant accessions showed susceptibility to warrior race and 57% remained resistant to moderately resistant. Within the susceptible accessions to PstS2 race in 2016, 22% showed resistance to the warrior race and the remaining were susceptible. In case of DW in 2016, 76% (553) of the accessions were resistant to PstS2, 23% (163) were moderately resistant and only 1% (7) were found susceptible. In 2017, 329 (46%) of the resistant accessions were found resistant, whereas 289 (40%) and 105 (15%) showed moderately resistance and susceptible reaction to Warrior race, respectively. The present data indicated that BW landraces were generally more susceptible to stripe rust than DWs. Susceptibility of both BW and DW accessions to Warrior race indicated that most likely some of the uncharacterized resistance genes which conferred resistance to PstS2 were ineffective against the warrior race. Sources of resistance to both races were identified in both BW and DW. Genetic architecture of identified sources of resistance in present study requires further investigations.

Taghouti
INRA
Co-authors: 
Fatima Gaboun, Nasserlhaq Nsarellah, Keltoum Rhrib, Atmane Rochdi
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
geographic_area: 
Primary Author First Name: 
Mona

Durum wheat landraces have constituted the main source of Moroccan wheat production until the first half of the last century. This local germplasm is still cultivated in less favorable environments particularly in mountains and sub-Saharan regions. In recent decades of the late 20th and early 21th centuries, the genetic improvement had led to the release of new durum wheat cultivars highly uniform and more productive. The present paper investigates the evolution of genetic variability in terms of productivity and quality related traits using an historical series of Moroccan durum wheat genotypes grouped according to their period of release into "Landraces/ Old cultivars," "Intermediate cultivars," and "Modern cultivars". A significant improvement was achieved in durum wheat Morroccan productivity. Modern cultivars exceed their predecessors in terms of productivity related traits. The genetic gain was clearly associated with a reduction in plant cycle and plant height lowering the straw yield which resulted in an increase of grain yield estimated to 15.42Kg/ha/year. However, results revealed a reduction in terms of almost all quality related traits; -0.12% per year for protein content, -0.30 % per year for gluten strength, -0.31% per year for yellow pigment content, and -0.19% per year for vitreousness. The results underline the important variability in grain quality attributes among landraces genotypes. This local germplasm may be used as sources of quality-improving attributes in durum wheat breeding program to develop new varieties combining both high productivity and grain quality.

Bassi
ICARDA, Rabat
Co-authors: 
Khaoula El Hassouni, Priyanka Gupta, Hafssa Kabbaj, Meryam Zaim, Amadou Tidiane Sall, Bouchra Belkadi, Ayed Al-Abdallat, Ahmed Amri, Rodomiro Ortiz, Michael Baum
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
Primary Author First Name: 
Filippo Maria

Durum wheat is the tenth most important crop in the world, but its cultivation is mostly limited to harsh, arid, and heat prone marginal lands. Breeding for tolerance to these conditions is often considered the most strategic approach to ensure adaptation, especially when paired with best agronomical practices. The word 'adaptation' summarizes all the research efforts conducted to identify the many traits controlling the mechanisms for withstanding or escaping the traceries of the environment. It can be summarized as "GGE vs E". The durum wheat breeding program of ICARDA deploys targeted phenotyping methods in combination with genomic scans to dissect these 'adaptive' traits into simple loci. These loci can then be pyramided via a combination of international field testing, markers assisted selection, genetically-driven crossing schemes, and genomic selection to derive climate-ready cultivars. Here, several examples of this approach are presented and their implications for 'adaptation' are discussed.

El Hassouni
Mohamed 5th University / ICARDA
Keywords: 
Co-authors: 
Samir Alahmad, Ayed Al-Abdallat, Lee Hickey, Abdelkarim Filali-Maltouf, Bouchra Belkadi, Filippo Maria Bassi
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
Primary Author First Name: 
Khaoula

Durum wheat (Triticum durum Desf.) is a major cereal crop grown globally. The terminal reduced moisture and heat occurring at the flowering phase are among the main constraints to its production. The molecular basis of tolerance to these threats remains mostly unknown. A subset of 100 genotypes derived from a collection of 384 accessions originating from different countries were investigated for their root growth and architecture under water-limited and well-watered treatments. Two protocols were used, "clear pot" for seminal root angle and "pasta strainer" for mature root angle evaluation. This study reveals that root architecture did not change depending on water treatment. A genotypic variation in root angle was found and two categories of root types were identified: genotypes with (i) superficial and (ii) deep rooting systems. In order to investigate the impact of each root type on yield, all genotypes were tested in the field at multiple locations and under different water regimes. The same set was also tested for heat tolerance in the field under rainfed conditions. Heat was imposed by placing a polytunnel at flowering time to raise the temperature of 10 degrees. The yield, thousand kernel weight and grain number per spike, were evaluated and compared to assess grain fertility, considered as a key trait of heat tolerance. The complete set was genotyped and a genome scan using 8173 SNPs markers developed by 35K Axiom array allowed to identify the genomic regions influencing drought and heat adaptation mechanisms. The pyramiding of this genomic regions could lead to an improved resilience to climate change and increase durum wheat productivity.

Cattivelli
CREA Research Centre for Genomics and Bioinformatics
Co-authors: 
,International Durum Wheat Genome Sequencing Consortium
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
Primary Author First Name: 
Luigi

The domestication of wild emmer wheat ~10,000 years ago by early agrarian societies have led to the selection of domesticated emmer and subsequently of durum wheat through a process of selection for non-brittle rachis and free-threshing forms. Durum wheat and became established as a prominent crop only ~1,500-2,000 years ago. We have completed the 10.45 Gb assembly of the 14 chromosomes of the modern DW cultivar 'Svevo' and provides, via comparison with the wild emmer assembly, an account of the genome-wide modifications imposed by 10,000 years of selection and breeding on the genome architecture of tetraploid wheat. A number of regions that were under selection during the domestication of wild emmer or the subsequent selection of durum wheat have been identified. Furthermore, we have projected on the durum wheat genome about 1,500 QTLs for morphological phenological and quality traits, grain yield components and disease resistance reported from published biparental mapping or GWAS. NBS-LRR genes are prominently involved in signaling and plant disease resistance. The durum wheat genome contains more than 66,000 genes and among them we annotated about 1,500 complete NBS-LRR genes. A similar number was found in the wild emmer genomes, nevertheless the comparison of the two genomes has identified some NBS-LRR genes specific for durum wheat. The availability of the complete genome of durum wheat will speed up the identification and the isolation of new resistance genes as well as the breeding for high-yielding and more resilient cultivars.

Al-Abdallat
Faculty of Agriculture, The University of Jordan
Keywords: 
Co-authors: 
Moneer Mansour, Nasab Rawashdah, Rabei Sayaydeh
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
Primary Author First Name: 
Ayed

Durum wheat (Triticum turgidum subsp. durum) landraces are rapidly disappearing from the main wheat production areas in the Fertile Crescent. Such local landraces are most likely contain geographically specific, ectopically adapted alleles or gene complexes for their harsh environments. A panel of 156 durum wheat landraces and released varieties were assembled from historical collections deposited in national and international gene banks and from a recent active collection mission from selected areas across Jordan. The panel were evaluated under field conditions in two different locations for one growing season. Data for days to heading, plant height, peduncle length, number of spikes spike length, spike weight, grains number, grains weight, number of kernels per spike and thousand-kernel weight were recorded. Results indicate the existence of a wide variation between the tested genotypes for all tested agronomical traits. For heading date, the Jordanian landrace "JDu103" was the earliest under dry environment conditions. Regarding grains weight and spike weight, the Jordanian landrace "JDu105" produced the highest mean value under humid conditions. Another landrace "JDu46" produced the longest spikes and the highest TKW mean value, while the Jordanian landrace "JDu105" produced the heaviest spikes weight mean value, while "JDu100" produced the highest grains number. For molecular analysis, total genomic DNA was extracted from each genotype and then used for SNP genotyping using Illumina iSelect wheat 90k SNP chip. Structure analysis showed that the analyzed durum wheat panel can be divided into three genetically distinct subgroups. The GWAS analysis identified 93 significant markers-traits associations for multiple traits with two QTLs located at 7A and 7B, which seems important for TKW in durum wheat under dry environments. In conclusion, the Jordanian landraces used in this study showed wide genotypic and phenotypic variability, which can be considered by plant breeders for their future use in breeding programs.

Karim Ammar
CIMMYT
Resistance Gene Tags: 
Co-authors: 
B. Ayele, A. Bekele, A. Loladze, S. Dreisigacker, and R.J. Pena
Poster or Plenary?: 
Plenary
BGRI Year: 
2014
geographic_area: 

Stem rust (SR) resistance is required for CIMMYT durum germplasm to keep relevance in Ethiopia, where Ug99 and other Pgt races are a major yield-limiting constraint, and in countries along the possible dissemination paths of these races. Resistance to Ug99 is widespread in most durum germplasm groups when tested in Kenya, but resistance is lost when exposed to Ethiopian races; hence selection at the Debre Zeit site in Ethiopia is essential for durum wheat. Due to difficulties with shuttling segregating populations between Mexico and Ethiopia, we have adopted a strategy involving the identification of resistant/moderately resistant lines at Debre- Zeit, and inter-crossing in Mexico followed by selection for resistance to leaf rust and agronomic type and finally screening for SR reaction in the resulting F6 lines at Debre-Zeit at the same time as they are tested for yield and quality in preliminary yield trials in Mexico. This has generated a significant increase in the proportion of resistant and moderately resistant genotypes within outgoing CIMMYT germplasm, from less than 3% at the onset of the initiative in 2008 to 16% in 2011, and 38% in 2013. SR-resistant germplasm was characterized by similar frequency distributions to other traits in the overall germplasm such as yield potential, drought tolerance and industrial quality parameters. Advances have also been realized using marker-assisted selection (MAS) to introgress Sr22 from bread wheat and to combine it with Sr25, producing advanced lines with 2-gene stacks with confirmed outstanding resistance and superior quality attributes. Since the two genes are closely linked but from different sources bringing them together required a very rare recombination event finally detected via MAS among thousands of plants. They are now essentially inherited together with a very low likelihood of generating recombinant individuals with either gene. The yield potential and stability of these lines are under evaluation in Ethiopia and the best lines are being used in a second round of breeding.

Slyvia Herrera-Foessel
CIMMYT
Co-authors: 
RP Singh, J Huerta-Espino, K Ammar
Poster or Plenary?: 
Poster
BGRI Year: 
2009

Variants of Puccinia triticina race BBG/BN, separately overcoming three resistance genes, were identified from durum wheat (Triticum turgidum ssp. durum) fields in northwestern Mexico since its introduction in 2001. Major genes available for use in breeding programs are limited and an alternative strategy is required. Previous studies indicated that slow rusting resistance in eight CIMMYT durums was determined by 2 to 3 minor genes with additive effects. Twenty-eight 4-way crosses were made between these lines with the aim of developing new germplasm with enhanced levels of resistance through pyramiding diverse minor genes. Plants in F1 (4-way) through F3 generations were selected for slow rusting under high leaf rust pressure at the Cd. Obregon and El Batan field sites in Mexico and spikes from selected plants were harvested as bulks. Plants in the F4 generation were individually harvested and1,843 advanced lines obtained, among which 106 lines with enhanced resistance, and desirable agronomic and grain characteristics were selected for non-replicated yield and leaf rust evaluation trials at Obregon during the 2007-2008 season. The best 19 lines, exhibiting near-immunity but with the presence of a few susceptible type pustules, parents and susceptible checks were evaluated for leaf rust resistance under very high disease pressure in replicated trials sown on two dates (16 May and 6 June) at El Batan during 2008. Spreader rows of susceptible cultivar ‘Banamichi C2004’, sown as border and as hills on one side of each plot, were inoculated with P. triticina race BBG/BP. Leaf rust severities, and host responses to infection were determined from weekly readings, and area under the disease progress curves (AUDPC) were calculated. Several lines were identified with significantly lower final leaf rust severity responses and AUDPC values than the most resistant parent in each cross. Our results show that enhanced levels of slow rusting can be generated by pyramiding diverse genes present in different parents. The trial is being repeated during the 2008-2009 season at Obregon to validate the results. In addition these lines are being used for transferring slow rusting resistance into high yielding, superior quality adapted backgrounds using the single-backcross approach.

Subscribe to durum wheat