All BGRI Abstracts

Displaying 81 - 90 of 415 records | 9 of 42 pages

GWAS of field and seedling response to individual Pgt races reveals combinations of race-specific genes in spring wheat

BGRI 2018 Poster Abstract
Erena Edae University of Minnesota
Michael Pumphrey, Matthew Rouse

Stem rust of wheat caused by the fungal pathogen Puccinia graminis f. sp. tritici historically caused major yield losses of wheat worldwide. To understand the genetic basis of stem rust resistance in contemporary North American spring wheat, genome-wide association analysis was conducted on 250 elite lines. The lines were evaluated in separate nurseries each inoculated with a different P. graminis f. sp. tritici race for three years (2013, 2015 and 2016) at Rosemount, Minnesota. The lines were also challenged with the same four races at the seedling stage in a greenhouse facility at the USDA-ARS Cereal Disease Laboratory. A total of 22,310 high-quality SNPs obtained from the Infinium 90,000 SNPs chip were used to perform association analysis. Markers strongly associated with resistance to the four races at seedling and field environments were identified. At the seedling stage, the most significant marker-trait associations were detected in the regions of known major genes (Sr6, Sr7a and Sr9b) except for race QFCSC where a strong association was detected on chromosome arm 1AL. Markers presumably linked to Sr6 and Sr7a were associated with both seedling and field resistance to specific races. A field resistance QTL on chromosome arm 2DS was detected for response to races RCRSC and TPMKC. A QTL specific to field resistance was detected for QFCSC and TPMKC on 2BL. The markers that showed strong association signals may be useful to pyramid and track race-specific stem rust resistance genes in wheat breeding programs. We postulated the presence of Sr2, Sr6, Sr7a, Sr8a, Sr9b, Sr11, Sr12, Sr24, Sr25, Sr31, and Sr57 (Lr34) in this germplasm based on phenotypic and marker data. We found that combinations of genes conferring resistance to specific P. graminis f. sp. tritici races accounts for the prevalent stem rust resistance in North American spring wheat.

Tags:

Outbreak of Wheat Yellow Rust disease under Moroccan conditions during 2016-2017 cropping season

BGRI 2018 Poster Abstract
Abdelhamid Ramdani Institut National de la Recherche Agronomique INRA Morocco
Kumarse Nazari, David Hodson, Tine Thach, Julian Rodriguez Algaba, Mogens Støvring Hovmøller

Wheat rusts, notably yellow rust, are amongst the most damaging diseases on wheat in Morocco. The objective of this survey was to assess the incidence and severity of wheat rust diseases across Morocco. The survey was carried out during April-May 2017 where growth stage of wheat ranged from anthesis to physiological maturity. The severity and response rating for the adult plant field reaction to rusts were based on the modified Cobb scale. A total of 117 bread wheat fields were inspected. The survey revealed that the most prevalent disease was yellow rust (96 out of 117 fields). Leaf rust, SLD (Septoria Like Diseases) and to some extent root rot complex were less prevalent. Leaf rust was only observed in 8 out of 117 inspected fields and exhibited low severity. Stem rust was observed in only one field. Following the drought of 2016, the 2017 growing season was an epidemic year for yellow rust in Morocco. It was detected across all regions and 50% of inspected fields were highly infected. Those that were lightly or not infected were sprayed with fungicides up to two times. Almost all commercial bread wheat cultivars in Morocco are highly susceptible to yellow rust. Appearance of new virulent races is leading to the breakdown of resistance in major cultivars e.g., Arrihan, which had very few pustules of yellow rust in 2013 was highly susceptible in the last three years. Samples of yellow rust from 2016 revealed a new virulent race in all samples, temporarily designated Pst (new) [virulence pattern: [Yr-,2,3,-,-,6,7,8,9,-,-,17,-,25,-,32,Sp,AvS,-]. Thirty-four samples submitted to GRRC in 2017 were all of the same genotype, identical to the new race already detected in 2016. The results demonstrate that surveillance and genotyping/race phenotyping of samples may be important for early-warning and anticipatory breeding strategies.

Tags:

Effect of host vernalisation, temperature and plant growth stage on wheat and triticale susceptibility to Puccinia striiformis

BGRI 2018 Poster Abstract
Julian Rodriguez-Algaba Aarhus University
Chris K. Sørensen, Rodrigo Labouriau, Annemarie Justesen, Mogens Hovmøller

Host vernalisation and temperature strongly affect the susceptibility of winter crops to pathogenic fungi. However, how the interaction of these environmental factors influence host susceptibility to Puccinia striiformis, the yellow (stripe) rust fungus, is poorly understood. An experimental system was developed to examine the effect of vernalisation, temperature regime (standard; 18 day/12 night °C and low; 12 day/6 night °C) and plant growth (seedling and adult plant stages) on changes in susceptibility of agronomically important winter wheat and triticale genotypes to P. striiformis races ('Warrior' and 'Kranich') highly predominant in several European countries. Host genotypes exposed to prolonged periods of low temperature, termed vernalisation, reduced disease susceptibility on specific winter host genotypes, although its effect differed considerably by the temperature regime and the P. striiformis race deployed. The influence of vernalisation on host susceptibility was more apparent at low temperature for the 'Warrior' race and at standard temperature for the 'Kranich' race. Triticale genotypes inoculated with the 'Kranich' race were particularly affected by the influence of vernalisation and temperature regime by displaying a shift towards reduced susceptibility at standard temperature. The effect of plant growth stage, i.e., vernalised seedlings versus adult plants, was most evident for the 'Warrior' race at standard temperature and at low temperature for the 'Kranich' race by revealing a lower infection type at the adult plant stage. The research findings presented here contributed to a better understanding of the role of environmental factors in host susceptibility. This, in fact, will aid in the development of more efficient early-warning systems and disease management strategies to the yellow rust fungus and in the decision making for the deployment of winter wheat and triticale genotypes.

Tags:

Wheat rusts status and population structure across Pakistan during wheat growing seasons 2015-16 and 2016-17

BGRI 2018 Poster Abstract
Sajid Ali The University of Agriculture, Peshawar, Pakistan
Muhammad,Khan, Safi, Kathi, Zahoor, Swati, Manzoor, Hussain, Annemarie, Justesen, Muhamamd, Imtiaz, , , , , , , , , , , , , , , , , ,

Considering the importance of wheat rust diseases in Pakistan and the recent identification of yellow rust pathogen (Puccinia striiformis f. sp. tritici) centre of diversity in Pakistan, the present study was designed to assess the status of three wheat rusts across the country during 2015-16 and 2016-17 and analyze the population structure of P. striiformis f. sp. tritici . A total of 451 fields (from 68 districts) were surveyed during 2016 and 480 fields (from 69 districts) during 2017. A high yellow rust pressure was present during 2016 throughout Pakistan, while it was predominant only in the Northern half during 2017. Leaf rust was present in the central part of the country, while stem rust was only found in the south. In Sindh province (located in the south), yellow rust was reported unexpectedly with high severity (>60%) on varieties like Kiran and Galaxy during both the years. A set of 513 samples of P. striiformis were genotyped with microsatellite markers to assess the population diversity and spatial structure. and infer on the cause of epidemics in the Sindh province. Population genetics analyses confirmed a recombinant population structure across all locations except the Sindh province, where relatively lower diversity and lack of recombination signature was revealed. At least five genetic groups were identified in the overall population, which were found across all locations, except Sindh province where one of the genetic groups was predominant. The P. striiformis population from Sindh province with low diversity that caused unexpected epidemics in a relatively warmer region needs to be further investigated for specific adaptation traits. Our results confirmed the high diversity across Pakistan, which lies in the Himalayan centre of diversity of the pathogen. This high diversity was present in locations without the presence of alternate host (Berberis spp.) and could potentially be associated with regular migrants from the Berberis zone into the whole country.

Tags:

Optimizing winter wheat traits to improve resilience to a changing environment in rainfed crop systems of Turkey and Iran

BGRI 2018 Poster Abstract
Marta Lopes CIMMYT
Emel Ozer, Mehmet Karaman, Mozaffar Roustaii, Jalal Kamali

Erratic weather patterns associated with climate change pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within the rainfed winter wheat areas of Turkey and Iran this erratic weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related with the fact that the ranking of tested varieties may greatly change from one year to the other. Erratic weather patterns may interfere with breeders decision on the ideotype(s) they should aim for during selection. To support breeding decisions, this study aimed at optimizing major traits through modelling different combinations of environments and defining probabilities of the range of variation of traits (phenology and pant height) that maximized grain yields. Optimal phenology was found to be highly related with the temperatures at which the winter wheat varieties were exposed at around heading time (20 days before and after heading). Specifically later winter wheat varieties were exposed to higher temperature both before and after heading and this exposure had a negative effect on grain filling duration and final grain yield. Finally, the use of at least five different wheat varieties in one production field (with different phenology and plant height) was compared to a field with monoculture to test for improved resilience. It was concluded that by selecting one best wheat variety in a wide range of environments it was possible to maximize grain yield and that using a set of diverse varieties was not beneficial.

Tags:

Isolation of wheat Yr26 sheds new insights into wheat resistance to Puccinia striiformis infection

BGRI 2018 Poster Abstract
Qingdong Zeng Northwest A&F University
Dejun Han, Jia Guo, Manuel Spannagl, Jianhui Wu, Aizhong Cao, Peidu Chen, IWGSC, Lili Huang, Jun Guo, Klaus Mayer, Zhensheng, Kang

Wheat cultivation in many regions faces threats by devastating fungal infections. However, wheat cultivar 92R137 shows resistance to Puccinia striiformis infection. To isolate the stripe rust resistance gene Yr26, an integrated transcriptomic and comparative genomics approach was undertaken. Near-isogenic lines of wheat (carrying Yr26 or not) infected with two Puccinia striiformis f. sp. tritici (Pst) (Virulence or avirulence to Yr26) were analysed in a dual detailed time series RNA-seq study. The emerging IWGSC refseq v1.0 genome assembly sequence serves as a valuable template and was also used for comparative genomics studies of the gene candidate region with the genome sequences of close relatives and wheat progenitors. Using bulked segregant analysis (BSA) to identify polymorphic SNPs between parent and resistant DNA (R-bulk) and susceptible DNA (S-bulk), flanking markers for Yr26 were identified. These two markers were mapped to the Chinese spring reference genome sequence, spanning a region of about 250 kb. The synteny analysis of this candidate region in CS chr1B with chr1A, chr1D, Wild Emmer Wheat (Td_chr1A and Td_chr1B) and Barley (chr1H) identified three candidate Yr26 genes. To detect gene candidates a dual time series RNA-seq analysis was performed. Genes differently expressed between rust susceptible (NIL-S) host lines and rust resistant (NIL-R) lines, carrying the Yr26 candidate gene were analysed. Both lines were inoculated with Pst carrying different avirulence factors (Pst-CYR32 and Pst-V26), compatible or incompatible with the corresponding wheat lines. Differential gene expression analysis (DEG) between compatible and incompatible interaction revealed DEGs in the wheat genome and in the Pst genome. From a network analysis of both wheat and Pst genes, we inferred connected co-expressed modules. Resulting modules showed particular enrichments for disease resistance, defense response to fungus and cell wall components.

Tags:

Paving the path of durum: Identification of flowering genes and heterotic behavior for root vigor

BGRI 2018 Poster Abstract
Priyanka Gupta University of Bologna, Italy/ International Center for Agricultural Research in the Dry Areas, Morocco
Hafssa Kabbaj, khaoula El hassouni, Elisabetta Frascaroli, Angelo Petrozza, Stephan Summerer, Marco Maccaferri, Miguel Sanchez-Garcia, Roberto Tuberosa, Filippo M. Bassi

Global food security is faced with many threats including population growth and changing climate. To cope with these threats a new paradigm shift is required to ensure sufficient and sustainable crop production. Hybrid technology could represent a partly strategic solution for durum wheat, but the understanding of its heterotic behavior is very limited. In this study, 53 F1 plants were produced via half diallel scheme and North Carolina design II, using as parental elite lines selected on the basis of their genetic distance. These hybrids along with their parents were evaluated for different physiological and root traits on a precision phenotyping platform (Lemnatec) at different levels of water stress. Additionally, a second root test was conducted in near field condition via a basket method to determine shallow or deep rooting behavior. Hybrids with the most heterotic combinations in terms of above and below ground biomass were identified. However, in order to ensure adequate pollination between heterotic parents, their flowering time must overlap. To identify good matching partners, a GWAS study was conducted to identify genomic regions associated with the control of flowering time in durum wheat. A total of 384 landraces and modern germplasm were assessed at 13 environments with different temperatures and day length throughout the season. Genotyping was conducted by 35K Axiom array to generate 8,173 polymorphic SNPs. In total, 12 significant QTLS for landraces and 17 QTLs for modern germplasm were identified consistently across environments. These two results when combined will allow to predict the best parental partners for hybrid production via markers screening on the basis of their genetic similarity to the most heterotic groups, and with matching flowering times.

Tags:

Genetic characterization of wheat for adult plant response against rust infestation under water deficit conditions

BGRI 2018 Poster Abstract
Rahil Shahzad Ayub Agricultural Research Institute, Faisalabad
Shakra Jamil

Different biotic and abiotic stresses are hampering wheat yield across different geographic regions. Among biotic stresses, wheat rusts are principal cause of yield reduction. Whereas among abiotic stresses, drought is the principle cause of reduction in growth and lowering yield potential. So developing rust resistance and drought tolerance in wheat germplasm is needed, which requires assessment of genetic potential of current cultivars against these stresses to identify variation among existing germplasm. Screening of genotypes under naturally prevailing races of rust species is the better and inexpensive approach. In the present study 65 genotypes including five checks (AARI-11, Chakwal- 50, Aas- 11, Morocco and Galaxy-13) were evaluated for adult plant response to wheat rusts and water deficit conditions. Experimental material was planted in four blocks each having new entries along with repetition of five checks in augmented design. Data was recorded on morphological traits including plant height, peduncle length, spike length, productive tillers per meter, flag leaf area, number of spikelet per spike, grains per spike, single head weight, 1000 grain weight, days to maturity and grain yield per acre. Significant variation was observed among genotypes for all the studied traits. On the basis of performance G39 and G36 were better than commercial drought check Chakwal-50 in almost all the traits. However rust screening under natural rust infestation revealed that although Morocco showed susceptible (S) response yet only six genotypes were susceptible to yellow rust whereas all others were resistant. In case of leaf rust 29 were completely resistance, 25 were moderately resistant, seven were moderately susceptible and only four were completely susceptible to currently active races of leaf rust. However, in the case of stem rust, 61 genotypes showed complete resistance to stem rust, two showed moderately resistance and two were moderately susceptible. Information obtained from this study would be favorable for breeding rust resistant and drought tolerant cultivars.

Tags:

Detection of race-specificity of adult plant resistance to wheat stem rust

BGRI 2018 Poster Abstract
Erena Edae University of Minnesota
Bedada,Girma, Bekele, Hundie, Endale, Hailu, Getaneh, Wonderufael, Bekele, Abeyo, Ayele, Badebo, Pablo, Olivera, Yue, Jin, Gordon, Cisar, Matthew, Rouse, , , , , , , , , ,

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a significant disease limiting wheat yield in Ethiopia. Wheat varieties such as 'Digalu' with single major-effect stem rust resistance genes have not exhibited durable resistance in Ethiopia. Identifying wheat lines with adult plant resistance (APR) has been proposed as a strategy to select for durable resistance. Our objective was to test the hypothesis that APR to stem rust is non-race-specific. We selected 31 wheat lines (including 10 durum and 21 bread wheat lines) that were susceptible as seedlings to Pgt races TTKSK, TKTTF, and TRTTF. These 31 wheat lines and Digalu were evaluated in 2014 and 2015 at the Kulumsa Agricultural Research Center, Ethiopia. The lines were planted in 1 m rows and replicated twice in separate single-race-inoculated nurseries. The three single-race nurseries inoculated with Pgt races TTKSK, TKTTF, and TRTTF were separated by at least 100 m and included selective spreaders. Plot yield, thousand kernel weight (TKW), and visual disease responses were measured for each plot. We used a least-squared means test to detect differences in coefficient of infection and TKW of each line across paired race comparisons. Lines 'Park', 'CI11469', and 'CI12818' displayed significantly different coefficient of infections between races TTKSK and TRTTF. For CI11469 and CI12818, this difference was validated by significant differences in TKW. Significant differences in TKW were also detected between various race comparisons for 'ETHBW019', 'CI14798', 'CI15159', 'CI14618', and 'CI14094'. Our data demonstrated that APR in the selected germplasm was largely non-race-specific, but there were exceptions where race-specificity of APR was detected. These results have implications for resistance breeding and monitoring: testing of breeding material against prevalent Pgt races in target environments, not relying only on hotspot screening locations, and careful monitoring of deployed APR varieties are all warranted.

Tags:

Stripe rust virulence in western Canada

BGRI 2018 Poster Abstract
Harpinder Randhawa Agriculture and Agri-Food Canada, Lethbridge, Alberta
Gurcharn Brar, Randy Kutcher, Raman Dhariwal

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat in western Canada. Although stripe rust was an issue in southern Alberta for many years, it became important in other parts of the country after a dramatic population shift in 2000, resulting from an invasive race. Sporadic epidemics of the disease are common and cause considerable loss, due to which, an intermediate level of resistance to stripe rust was required for new varietal registrations beginning 2017. Virulence surveys are of key importance in germplasm and cultivar development as they provide breeders and pathologists the information needed to better understand host-pathogen interactions and the effectiveness of Yr genes. Virulence characterization revealed a wide range of virulence phenotypes exhibited by 33 Pst races in western Canada, although only 2-3 races were predominant. The expression of Yr genes may differ between controlled conditions and natural field conditions as previously reported. Thus, stripe rust differentials and wheat cultivars grown in western Canada are also screened at multiple locations in every year. At present, all stage resistance genes Yr1, Yr4, Yr5, Yr15, Yr76, and YrSP are effective against the predominant Pst races, whereas at the adult stage under field conditions, Yr2, Yr17, Yr28, or those carried by Yamhill are also effective. Seedling resistance genes Yr7, Yr10, Yr17, or Yr27 were the most common in Canadian wheat cultivars. Of these, only Yr17 is effective under field conditions. Adult plant resistance genes Yr18 and Yr29 are carried by many cultivars, but are not effective under high disease pressure. The effectiveness of each resistance gene may vary between the eastern and western prairies of western Canada due to differences in virulence. Regular virulence surveys using contemporary and regional cultivars facilitate the development of rust resistant cultivars.

Tags:

Pages