All BGRI Abstracts

Displaying 71 - 80 of 416 records | 8 of 42 pages

Aegilops tauschii contribution to disease resistance traits exceeds the contributions of the durum subgenomes in synthetic hexaploid wheat

BGRI 2018 Poster Abstract
Abdulqader Jighly La Trobe University
Reem Joukhadar, Sukhwinder Singh, Francis Ogbonnaya

Synthetic hexaploid wheat (SHW), generated by crossing Triticum turgidum (AABB) with Aegilops tauschii (DD), has been exploited in improving various traits in cultivated wheat. A number of recent studies decomposed the additive variance of different traits captured by multiple sets of variants (e.g. single nucleotide polymorphisms (SNPs) located on different chromosomes or genic/intergenic regions) in both human and animal quantitative genetics studies. In this research, we dissected the additive variance explained by the three subgenomes and seven homoeologous sets of chromosomes in SHW germplasm to gain a better understanding of trait evolution in newly synthesized wheat. Our SHW germplasm lines generated by crossing improved durum parents (AABB) with Aegilops tauschii (DD) parents were phenotyped for ten fungal/nematode resistance traits. The lines were genotyped by genotyping-by-sequencing and 6,176 SNPs were mapped with missing data of less than 20%. The D subgenome dominated the additive effects and this dominance affected the A more than the B subgenome. The D subgenome exhibited a 1.8-fold higher contribution than the A subgenome across all traits. This dominance was not inflated by population structure or by longer linkage disequilibrium blocks observed in the D subgenome. The cumulative effects of the three homoeologs in each set had a significant positive correlation with their cumulative explained additive variance. Moreover, an average of 70% for each chromosomal group cumulative additive variance came from one homoeolog that had the highest explained variance within the group across all ten traits. We hypothesize that structural and functional changes during diploidization may explain chromosomal group relationships as allopolyploids maintain a balanced dosage for many genes. Our results contribute to a better understanding of trait evolutionary mechanisms in SHW, and will facilitate effective utilization of wheat relatives in breeding.

Tags:

Summary on the pathogenic variability of wheat rusts in Lebanon over the period 2009-2017

BGRI 2018 Poster Abstract
Rola El Amil Lebanese Agricultural Research Institute
Claude de Vallavieille-Pope, Marc Leconte, Mogens Hovmøller, Kumarse Nazari

Wheat rusts, caused by the fungal pathogen Puccinia sp. are serious economic diseases of wheat worldwide. Surveillance, monitoring and new virulence identification are prerequisites for future race prediction and for effective breeding programs. Therefore, we decided to compile the endeavours done for surveillance over eight cropping seasons in Lebanon. The extensive field surveys were conducted yearly in major bread and durum wheat areas over the period 2009-2017 using the Borlaug Global Rust Initiative surveillance protocols. Over eight years, 136 locations were surveyed, 56 samples were collected from mainly stripe and stem rust, and X samples were phenotyped using a robust set of standards differentials lines used worlwide at Tel Hadya - ICARDA, 6 phenotyped at INRA - Grignon, 4 phenotyped at the Global Rust Reference Center (GRRC), until the season 2015-2016 the cereal rust laboratory at LARI became autonomous in race analysis. Six samples were genotyped. The latest phenotyping showed that pathotypes had combinations of the virulence for the widely deployed genes Yr2, Yr6, Yr7, Yr8, Yr9, Yr25 and Yr27 resembling to the aggressive strain PstS2, the invasive high temperature tolerant isolate. Resistance genes Yr1, Yr3, Yr4, Yr5, Yr10, Yr15, Yr17, Yr32, and YrSP were effective against all isolates. Race typing of the stem rust sample using the North American stem rust differential sets indicated presence of TKTTF in surveyed wheat growing areas as well as at ICARDA's research station in Terbol. Identified races have been used in field artificial inoculation of ICARDA's breeding program during the last two years. In conclusion, the races PstS2 and TKTTF were the dominant prevalent races in the country for yellow and stem rust respectively. This information could be useful for the region for better integrated disease management and wider diversification of resistance genes deployment in breeding programs.

Tags:

Genetic variability and association mapping of anther extrusion in spring bread wheat

BGRI 2018 Poster Abstract
Samira El Hanafi International Center for Agricultrural Research in Dry Areas
Wuletaw,Tadesse, Najib, Bendaou, , , , , , , , , , , , , , , , , , , , , , , , , ,

Hybrid wheat is a promising technology to increase yields worldwide. High seed production costs and low heterosis are the main constraints for the development of hybrid wheats. Maximizing heterosis, and selection and utilization of appropriate morphological, floral and flowering traits to optimize outcrossing are important for hybrid seed production. For an efficient hybrid wheat seed production, high anther extrusion is required to promote cross fertilization and to ensure a high level of pollen availability. A pool of 200 elite spring bread wheat male parental lines was visually assessed for anther extrusion in the plastic-house and field environments. Genome-wide association studies (GWAS) for anther extrusion was carried out using a total of 12725 SNP markers. A wide genotypic variance was observed. Several significant (|log10(P)| > 3.0) marker trait associations (MTAs) were detected. Both genotypes and environment influenced the magnitude of the anther of extrusion. The consistently significant markers could be helpful to introduce anther extrusion trait in high yielding varieties and consequently improve hybrid-seed production in wheat.

Tags:

Identification of resistance wheat cultivars using molecular marker against yellow rust in Azerbaijan

BGRI 2018 Poster Abstract
Konul Aslanova Research Institute of Crop Husbandry, Azerbaijan
,, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

A study was conducted between 2014 and 2016 aiming at determining resistance genotypes of 51 local wheat cultivars in Azerbaijan. The cultivars were evaluated in five different agro-ecological zone including Absheron and Tar-Tar (Irrigated area), Qobustan (dry semi subtropical area),Sheki (rain fed area), and Jalilabad (dry area) against three of the rust pathogens under natural conditions with four repetitions at each region. Field responses under natural infection were recorded according to Modified Cobb's scale for major field responses (Restance (R), Moderelt Resistance MR), Moderet Sesusptable (MS), and Sussciptabe (S) and diseases severity (0-100%). For molecular analysis, genomic DNA was extracted from leaves and the following six markers (Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, and Yr26) were used to identify resistance genes at Plant Genomics College of Agronomy Northwest A&F University China. Marker analysis revealed that Yr5 was present at least in 12 cultivars including Murov, Murov-2, Shafag, Shafaq-2, Nurlu-99,Fatima, Azamatli-95,Agali, Gunashli, Saba Giymatli 2/17, P?rzivan-1, Tale-38. In addition, Yr9 was present in seven culitivars (Pirshahin-1, Layagatli-80, Shafag-2, Zirva-85,Fatima, Agali, Gunashli). Yr10 was present in eight cultivars (Yegana, Garagilchig-2, Yagut, Pirshahin, Shirvan-5, Barakatli-95, Bayaz, Girmizi bugda). And Yr18 was present in Mirbashir-128, Azamatli-95, Gunashli, Akinchi-84, Shirvan-3 cultivars. Yr26 worked well but was not found in any of cultivars. Yr17,Yr15 did not work very well with this method.

Tags:

Emerging private sector involvement in wheat seed research and production in India

BGRI 2018 Poster Abstract
Venugopal Chintada Sathguru Management Consultants
Kanan,Vijayaraghavan, Vijay, Paranjape, Richa, Kapur, Vignesh, Vilayanur Jayaraman, , , , , , , , , , , , , , , , , , , , , ,

Wheat is one of the most important food crops of the world. India is the second largest producer of wheat, currently producing 95 million tons from about 30 million hectares. Looking ahead to 2050, India needs to constantly increase production to about 150 million tons, to meet the rising population and demand. With area under cultivation having no room for growth, productivity will be the main pillar for growing production. Currently India?s yield of 3.1 t/ha has plenty room for growth as compared to the world leaders such as France (7.5 t/ha), Germany (7.3 t/ha) and UK (6.6 t/ha). Wheat productivity depends on multiple factors, seed being one of the most important.
The current operating environment is characterized by wheat R&D in the country conducted by public institutes, but there are clear signs of an emerging private sector involvement. The government promoting Inter-institutional linkages by way of associating private players in research and seed production.
This study evaluates and reflects on the current situation of the wheat seed sector in India - from research, variety/hybrid development, seed production, indent to distribution, the players involved, the challenges therein, upcoming technologies and the way forward.

Tags:

Detection of rust resistance in selected Zimbabwean and ICARDA bread wheat (Triticum aestivum L.) germplasm using conventional and molecular techniques

BGRI 2018 Poster Abstract
Bruce Mutari Crop Breeding Institute
Sripada Udupa, Charles Mutengwa, Peter Mavindidze

Host resistance is the most effective and economical method to minimize yield losses caused by rusts. The aim of this study was to detect the presence of resistance in 75 wheat genotypes. The presence of the genes viz. Sr2, Sr24, Lr34, Lr37, Lr46 and Lr68 was investigated using simple sequence repeat and sequence tagged site markers. Quantitative aspects of resistance to leaf rust were assessed through infection response (IR), disease severity (DS), coefficient of infection (CI), disease incidence (DI), leaf tip necrosis (Ltn) and area under disease progress curve (AUDPC) under natural epidemics. Highly significant (p <0.001) differences were observed among the genotypes for CI, DI, AUDPC and relative AUDPC (rAUDPC). Twenty genotypes exhibited high levels of adult plant resistance, recording CI less than 20% and AUDPC less than 300%, with moderately susceptible to susceptible reactions. The most frequently occurring gene was Lr46 (21%), followed by Lr68 (20%), Lr34 (19%) andLr37 (11%). The stem rust resistance gene Sr24 was absent in all the genotypes. Selection for Lr34 and Lr46 based on Ltn alone can sometimes be misleading because of its variable expression in different genetic backgrounds.

Tags:

Expansion of genetic diversity for winter wheat and selection of new sources of resistance to leaf and stripe rust in South-East

BGRI 2018 Poster Abstract
Gulnura Suleimanova Kazakh National Agrarian University
Yerlan Dutbayev, Alexei Morgounov

Kazakhstan is among the ten largest grain exporters in the world. Winter wheat in Kazakhstan is mainly cultivated in the southern and south-eastern regions on an area of 1.5-2 million hectares, including 140-170 thousand hectares - in irrigated lands. Annual losses of wheat yield from diseases can reach up to 30-40% or more. For Kazakhstan, the most dangerous diseases of winter wheat are stripe rust and leaf rust. Work is under way in Kazakhstan to find new donors for resistance to leaf rust and stripe rust and the use of these donors in breeding. The aim of this research was to expand genetic diversity through crosses and development of lines obtained by the method of remote hybridization, as well as selection of new sources of resistance of bread wheat to leaf rust and stripe rust in southeast Kazakhstan. The subject of the research were 49 hexaploidsynthtic lines of Kyoto University (Japan) and CIMMYT and commercial varieties of winter wheat in the Almaty region. We screened synthetic hexaploid wheat for resistance to diseases. A collection of hexaploid synthetic wheat lines resistant to the diseases and adapted to various conditions of the Almaty region has been established. The character of inheritance of resistance to diseases in crosses of synthetic wheat with local cultivars based on comparison of the first generation and parents was studied. Evaluation of phenotypes inheritance of resistance in hybrids in the generation of F2, showed that 9crosses of synthetic wheat(LANGDON/IG 48042//ZHETISU, LANGDON/IG 48042//FARABI, LANGDON/KU-20-8//AJARLY, LANGDON/KU-2075//AJARLY, LANGDON/KU-2097// ZHETISU, LANGDON/KU-2075//FARABI, LANGDON/KU-2100//STEKLOV, LANGDON/KU-2144//NAZ, LANGDON/KU-2076//NAZ)possess the dominant resistance genes to leaf rust.Seven lines(LANGDON/ KU-2075/AJARLY, LANGDON/KU-2075/FARABI, LANGDON/KU-2092/FARABI, LANGDON/KU-2100/NAZ, LANGDON/KU-2097/STEKLOVINDAYA, LANGDON/KU-2097/ZHETISU, LANGDON/KU-2097/ AJARLY) possess from one to several dominant resistance genes to stripe rust.

Tags:

Developing an enriched wheat 2A chromosome map and mapping of Adult plant stripe rust resistance gene

BGRI 2018 Poster Abstract
Suruchi Jindal Punjab Agricultural University
Parampreet,Kaur, Preeni, Bawa, Bharat, Yadav, Ajay, Mahato, Inderjit, Yadav, Priti, Sharma, OP, Gupta, Parveen, Chhuneja, NS, Bains, Jaroslav, Dolezel, Bikram Singh, Gill, J, Khurana, NK, Singh, Kuldeep, Singh, Kelly, Eversole

Diploid A genome wheat species harbor immense genetic variability which has been targeted and proven useful in wheat crop improvement. Further, the development and deployment of sequence based markers in wheat using survey sequences from next generation sequencing has opened avenues for comparative analysis, gene transfer and marker assisted selection (MAS) using high throughput cost effective genotyping techniques. Chromosome 2A of wheat is known to harbor several economically important genes. The present study aimed at in silico identification of genes corresponding to full length cDNAs and mining of SSRs and ISBPs from 2A draft sequence assembly of Chinese Spring for marker development. In totality, 1029 primer pairs (478 gene based, 501 SSRs and 50 ISBPs) were used to screen for polymorphism in diploid A genome species i.e., T. monococcum and T. boeoticum that identified 221 polymorphic loci. Out of these, 119 markers were mapped in T. monococcum X T. boeoticum RIL population. The enriched 2A genetic map constituted 161 mapped markers with final map length of 549.6 cM. Further, the utility of this enriched genetic map was demonstrated towards the fine mapping of adult plant resistance (APR) QTL, QYrtm.pau-2A against stripe rust. Using composite interval mapping, a QTL was detected between G45 and G54 markers explaining 19% of phenotypic variance. The primer sequences of the two genic markers were used to find the scaffold of 343 kb from IWGSC WGA V0.4 data. Thirty five simple sequence repeat markers were designed from the scaffold sequence which are being used for the fine mapping of QYrtm.pau-2A.

Tags:

Molecular dissection of below and above ground adaptation traits for abiotic tolerance of durum wheat

BGRI 2018 Poster Abstract
Khaoula El Hassouni Mohamed 5th University / ICARDA
Samir Alahmad, Ayed Al-Abdallat, Lee Hickey, Abdelkarim Filali-Maltouf, Bouchra Belkadi, Filippo Maria Bassi

Durum wheat (Triticum durum Desf.) is a major cereal crop grown globally. The terminal reduced moisture and heat occurring at the flowering phase are among the main constraints to its production. The molecular basis of tolerance to these threats remains mostly unknown. A subset of 100 genotypes derived from a collection of 384 accessions originating from different countries were investigated for their root growth and architecture under water-limited and well-watered treatments. Two protocols were used, "clear pot" for seminal root angle and "pasta strainer" for mature root angle evaluation. This study reveals that root architecture did not change depending on water treatment. A genotypic variation in root angle was found and two categories of root types were identified: genotypes with (i) superficial and (ii) deep rooting systems. In order to investigate the impact of each root type on yield, all genotypes were tested in the field at multiple locations and under different water regimes. The same set was also tested for heat tolerance in the field under rainfed conditions. Heat was imposed by placing a polytunnel at flowering time to raise the temperature of 10 degrees. The yield, thousand kernel weight and grain number per spike, were evaluated and compared to assess grain fertility, considered as a key trait of heat tolerance. The complete set was genotyped and a genome scan using 8173 SNPs markers developed by 35K Axiom array allowed to identify the genomic regions influencing drought and heat adaptation mechanisms. The pyramiding of this genomic regions could lead to an improved resilience to climate change and increase durum wheat productivity.

Tags:

In vitro response of durum wheat (Triticum durum Desf.) varieties under drought stress

BGRI 2018 Poster Abstract
Sourour Ayed Research Center of Agricultural and Development in Northwest Semi-arid regions of Tunisia
Afef,OTHMANI, Olfa, SLAMA-AYED, Hajer, SLIM-AMARA, Mongi, BEN YOUNES, , , , , , , , , , , , , , , , , , , , , ,

Eleven durum wheat (Triticum durum Desf.) genotypes were screened to select for drought-tolerance under in vitro immature embryos culture. Drought stress is induced by using five PEG concentrations (0, 200, 270, 295 and 310 g/l of PEG 6000). Results showed, for all studied traits, significant differences among PEG treatments and genotypes. In fact, increasing PEG concentration decreases relative growth rate, callus water content, relative water content, in vitro tolerance and relative tolerance. Biplot analysis indicated that the first two PCs (principal components 1 and 2) explain 70.5 % and showed that Karim, Mahmoudi and Om Rabiaa are respectively the most drought tolerant varieties tested, however, Ben Bechir, Maghrbi and Nasr were the most sensitive.

Tags:

Pages