All BGRI Abstracts

Displaying 51 - 60 of 415 records | 6 of 42 pages

Existence of divergent lineages, virulence phenotypes and DNA methylation in the Canadian Puccinia striiformis population

BGRI 2018 Poster Abstract
Gurcharn Singh Brar Crop Development Centre/Department of Plant Science, University of Saskatchewan, Saskatoon, Canada
Sajid Ali, Dinah Qutob, Steve Ambrose, Ron Maclachlan, Kun Lou, Curtis Pozniak, Yong-Bi Fu, Andrew Sharpe, Randy Kutcher

Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is one of the most important pathogens of wheat. Attempts have been made in the past to characterize the worldwide genetic structure of Pst populations, excluding Canada. Characterization of 59 isolates identified 33 races with three most common races representing half of the population and subtle differences in races of eastern and western prairies. For molecular characterization, 48 isolates were sequenced to obtain SNPs and genotyped with Pst-specific SSR markers. Isolates that were suspected of recombination based on SNP data were examined for their telia production ability as a proxy for sexual recombination. The study revealed that the majority of the population was clonal, however, not exclusively clonal, with the existence of four genetic lineages. Two lineages previously reported were identified: PstS0, representing an old northwestern-European and PstS1, an invasive warmer-temperature adapted lineage. Additionally, two new lineages, PstPr and PstS1-related, were detected that have not been reported previously. The PstPr and PstS1-related lineages produced more telia than the other lineages and had double the number of unique recombination events compared to PstS0 and PstS1. PstPr was concluded to be a sexual recombinant and an exotic incursion, which was closely associated with PstS5, PstS7 (Warrior), and PstS8 (Kranich) lineages, all of which arose by sexual recombination in the center of diversity - the Himalayan region. The total phenotypic variation in the population could not be explained solely by molecular genotypes, and a hypothesis on existence of epigenetic machinery in the Pst genome was tested. Homologs of the DNMTases class (DNMT1) were identified, providing compelling evidence of a role for DNA methylation. As a first report of DNA methylation, an average of ~5%, 5-methyl cytosine (5-hmC) in the Puccinia epigenome indicated the possibility of epigenetic regulation, which merits further investigation.

Tags:

Occurrence of wheat rusts in Algeria and strategies to reduce crop losses

BGRI 2018 Poster Abstract
Amira Bentounsi University Mentouri of Constantine, Algeria

Wheat is the world's most widely grown food crop. New races of pathogens frequently overcome current resistant varieties. To address this issue Algeria has strategies for immediate action, medium term protection and long-term research efforts to develop new resistant wheat varieties. Yellow rust is a very important disease of wheat in Algeria where 60% of the wheat crop is grown under cooler high elevation climate conditions (2?C ? 15?C). Crop losses reached 80% during the 2004/2005 epidemics. Strategies adopted to reduce the risk of wheat rust are ongoing yearly surveillance, awareness, and early warning systems to farmers; and breeding and developing new varieties with high yield potential and durable resistance. Several highly resistant varieties (Tiddis, Boumerzoug, Massine, Akhamokh and Yacine) were selected and promoted following seed multiplication and commercial release. They are also widely used in crosses to improve local varieties. The newly released varieties are being distributed to farmers that grow susceptible varieties. This gene deployment will provide a natural barrier between eastern to western Algeria to intercept the major direction of air flow. Fungicide control is now routinely applied soon after rust detection or even preemptively. The level of awareness for wheat rusts across Algeria is now very high. Training among farmers for visual detection is widely promoted by plant protection and extension services. These strategies have been very effective in mitigating the threat of wheat stripe rust such that losses have not exceeded 10% over the last five years.

Tags:

Genetic variability of drought sdaptive traits in nepalese wheat (Triticum aestivum L.) germplasm

BGRI 2018 Poster Abstract
Dipendra Pokharel Department of Agriculture, Sunsari, Nepal

Wheat (Triticum aestivum L.) is one of the major cereal crops vital for global food supply. Most of the wheat crop in developing world including that of Nepal is either grown with limited irrigation or under rainfed conditions and thus face moisture stress at one or more growth stages limiting grain yield. An experiment was carried out at the Institute of Agriculture and Animal Science, Rampur to evaluate the genetic variability of selected drought adaptive traits in Nepalese wheat germplasm. The wheat genotypes evaluated comprised of Nepalese landraces and commercial cultivars, CIMMYT (International Center for Maize and Wheat Improvement) derived advanced introduction lines and three checks with differential drought adaptability. The wheat genotypes were grown in pots (single plant) arranged in a replicated split plot design in greenhouse under two contrasting moisture regimes, optimum and moisture stressed. The genotypes were evaluated for water use, water use efficiency, relative leaf water content and biomass production. The ANOVA (Analysis of Variance) revealed significant variation between environments and among the wheat genotypes for most of the traits studied. A wide range of variability was observed for water use, water use efficiency, biomass yield and relative leaf water content in moisture stressed and non-stressed environments. Nepalese cultivar Gautam showed a number of favorable drought adaptive traits, whereas, Bhrikuti was average in this respect. Based on the scores of drought adaptive traits recently released Cultivar (cv). Vijay was characterized as drought sensitive. A number of landraces and advanced breeding lines showed high level of water use efficiency and other positive traits for drought adaptation.

Tags:

Yield loss due to stem rust in wheat varieties with different types of resistance

BGRI 2018 Poster Abstract
Tegwe Soko University of the Free State and Seed-Co
Vicky Coetzee, Cornelia M. Bender, Renée Prins, Zacharias A. Pretorius

Notwithstanding the re-emergence and importance of wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt), the degree of protection provided by different types of resistance has not been carefully investigated in contemporary studies. Seven wheat entries were exposed to stem rust infection and fungicide response in a split-plot field experiment over two seasons. Severe epidemics of Pgt race PTKST, generated by frequent inoculation of spreader rows within and around the trial, developed in both years. By comparing grain yield in rusted and fungicide sprayed plots, varieties SC Nduna (Sr31) and SC Stallion (Sr2+Sr31) sustained mean yield losses of 28.8% and 20.7%, respectively. From entries with adult plant resistance (APR), Kingbird recorded a loss of 10.1% as compared to W1406 (19.5%) and W6979 (15.4%). Grain yield of SC Sky which exhibits all stage resistance (ASR) was reduced by 6.4% over the two seasons. The highest yield loss (47.9%) was measured for Line 37, the susceptible control. A significant linear relationship occurred between percentage yield loss and AUDPC in both seasons (R2=0.99 and 0.83). This study showed that not all sources of APR to stem rust provided the same level of protection under severe disease pressure. In the absence of virulence for SC Sky, ASR conferred the most protection.

Tags:

Genetic variability in bread wheat (Triticum Aestivum L. ) accessions using functional and random DNA Markers

BGRI 2018 Poster Abstract
Kachalla Kyari Mala Lake Chad Research Institute, Maiduguri, Borno State-Nigeria
Dattijo Aminu, Zakari Goji Silas Turaki, Fatima Henkrar, Udupa Sripada

The research was conducted at ICARDA, Rabat. Twenty-four accessions were obtained from LCRI for marker analysis. Wizard Genomic DNA Purification Kit was used for DNA extraction. DNA was extracted by CTAB method and quantified using 1.0 % (w/v) agarose gels. Total of 12 loci, 5 functional and 7 linked random DNA markers to the traits of interest were used. PowerMarker and DARwin software were used to calculate the No. of alleles and values of genetic diversity, PIC, genetic distance, and NJ dendrogram. The total No. of detected alleles was 39; and mean No. of alleles was 3.25. No. of alleles range from 1 (Dreb-B1) to 9 (Xgwm577). Genetic diversity index ranged from 0.0000 in Dreb-B1 to 0.8471 in Xgwm577. The PIC value was also varied from 0.0000 (Dreb-B1) to 0.8296 (Xgwm577). The frequency of biotic resistance linked random DNA marker allele at Xgwm144 and Xwmc44, associated with yellow and leaf rust gene was 25% each. Marker alleles Xgwm577 and Xgwm533 linked to Stb2 and Stb8 at 150 and 120bp have frequencies of 21 and 4%. The frequency of abiotic resistance showed 50% of accessions had 1R segment (1BL.1RS translocation) and 58% of accessions showed presence of 120bp allele of Xwmc89, associated with QTL for drought tolerant. Functional marker alleles of Dreb-B1 associated with drought tolerant genes showed alleles frequency in all accessions. Linked marker allele Xgwm111 linked to heat tolerant gene showed 17% allele frequency at 220bp. Rht1 and Rht2, the allele frequencies were 92 and 4%. 92% of the cultivars had photoperiod insensitive allele at Ppd-D1 locus. VrnA1a and VrnA1c primer pair amplified at 965, 876, and 484bp, allele frequency of 13 and 87%. Cluster analysis had grouped the accessions into 5 at a genetic distance level 0.15.

Tags:

Building upon past successes for a continued impact on production and food security through breeding high yielding climate change resilient durum wheat varieties

BGRI 2018 Poster Abstract
Mohamed Salah Gharbi National Institute of Agriculture Research, Tunisia

Meeting food security challenges is a high priority in many developing countries. North African countries are among those with the highest per capita wheat consumption in the world and chronic grain deficits. Climate change scenarios predict decrease of rainfall and increase of temperature with negative impact on crop production and hence food security. Along with adoption of modern technologies, breeding higher yielding and more climate change resilient wheat varieties is widely seen as a tool that can sustain past yield gains and food production increases. Durum wheat production in Tunisia greatly benefited from the green revolution ingredients. Continued breeding lead to replacement of the early semi dwarf varieties with higher yielding, better disease resistant and more drought tolerant ones that have positively impacted yield at farmer and national level. Monitoring gains from increased yield potential and resistance to the most damaging foliar diseases, mainly septoria leaf blotch, leaf rust and stripe rust, showed that grain yield of recently released varieties is up to four times that of the tall late maturing landraces grown before the 1970's and up to 2.5 times that of varieties of the early years of the green revolution. Chlorophyll content, green leaf duration, deeper root development from diverse donors including wild wheat relatives and grain yield are being integrated in the breeding program for the selection of more drought and heat stress tolerant durum cultivars

Tags:

Harnessing the predictive power of epidemiological modelling for wheat yellow rust disease

BGRI 2018 Poster Abstract
Vanessa Bueno-Sancho John Innes Centre
Christopher,Judge, Francesca, Minter, Nik, Cunniffe, Richard, Morris, Diane, Saunders, , , , , , , , , , , , , , , , , , , ,

Wheat yellow rust is a disease caused by the fungus Puccinia striiformis f. sp tritici (PST) that is a significant threat to wheat production worldwide. Recently, a novel approach called "Field Pathogenomics" was developed that allows acquisition of genotypic data from field samples of PST-infected wheat. This has enabled us to study the re-emergence of this pathogen in the UK and understand the different races that form the current PST population. However, the dynamics of pathogen transmission and dispersal still remain unknown and understanding this is essential for designing effective surveillance. The objective of this project is to develop a spatially-explicit model for the spread of PST that can contribute to better management of the disease and be used as a warning system for wheat yellow rust infection in the UK. The first aim is to study how PST spreads at the field level and determine whether there are differences between PST races in terms of disease dynamics. To this end, a set of markers have been designed that can be used to genotype field-collected isolates and determine which race they belong to. Field trials were also undertaken across the UK using wheat varieties that are known to be susceptible to the disease, with PST-infected wheat samples collected during the 2015-2016 and 2016-2017 seasons. These samples will be genotyped to study the prevalence of different PST races and determine whether PST genotypes identified early in the season are predictive of dominant genotypes found later in the season. Understanding PST dynamics within a field is key to build an epidemiological model that can predict how this disease behaves. This would improve disease management, targeting of chemical sprays and optimize pathogen surveillance.

Tags:

Emerging private sector involvement in wheat seed research and production in India

BGRI 2018 Poster Abstract
Venugopal Chintada Sathguru Management Consultants
Kanan,Vijayaraghavan, Vijay, Paranjape, Richa, Kapur, Vignesh, Vilayanur Jayaraman, , , , , , , , , , , , , , , , , , , , , ,

Wheat is one of the most important food crops of the world. India is the second largest producer of wheat, currently producing 95 million tons from about 30 million hectares. Looking ahead to 2050, India needs to constantly increase production to about 150 million tons, to meet the rising population and demand. With area under cultivation having no room for growth, productivity will be the main pillar for growing production. Currently India?s yield of 3.1 t/ha has plenty room for growth as compared to the world leaders such as France (7.5 t/ha), Germany (7.3 t/ha) and UK (6.6 t/ha). Wheat productivity depends on multiple factors, seed being one of the most important.
The current operating environment is characterized by wheat R&D in the country conducted by public institutes, but there are clear signs of an emerging private sector involvement. The government promoting Inter-institutional linkages by way of associating private players in research and seed production.
This study evaluates and reflects on the current situation of the wheat seed sector in India - from research, variety/hybrid development, seed production, indent to distribution, the players involved, the challenges therein, upcoming technologies and the way forward.

Tags:

Breeding of high yielding, rusts resistance and Zn-enriched wheat varieties for different agro-ecological zones of Pakistan

BGRI 2018 Poster Abstract
Maqsood Qamar Wheat Program, National Agricultural Research Center (NARC) Islamabad
Sikander Khan Tanveer, Muhammad Sohail, Muhammad Shahzad Ahmed, Sayed H. Abbass, Sundas Wagar, Atiq Rattu, Muhammad Imtiaz

Wheat plays a vital role in multifaceted farming system of Pakistan. Like other many other countries, Pakistan's sustainable wheat production is also continuously threatened by a number of biotic and abiotic stresses. Among the biotic stresses, three rust diseases of wheat have been the most devastating. Stem rust was effectively controlled with adoption of the semi-dwarf spring wheats of the Green Revolution. However, the threat of the evolution of Ug99 race of stem rust in East Africa and its migration to Iran cannot be neglected. The Chance of of Ug99 migrating from Iran into Pakistan, coupled with the presence of dangerous new races of stripe and leaf rusts invites enormous efforts for development of rust resistant varieties for sustainable production of the wheat in the country. In this regard the Wheat Program, NARC, Pakistan initiated an intensive breeding program with financial and technical support of USDA and CIMMYT. Diverse sources of resistance to the three rusts particularly to the stem rust race Ug99 were introduced from CIMMYT. Through the rigorous selection procedure, four rusts resistant wheat varieties (NARC 2011, Pakistan 2013, Zincol 2016 and Borlaug 2016) have been released. These varieties are also resistant to Ug99. The varieties i.e. NARC 2011, Borlaug 2016 and Zincol 2016 are performing well in irrigated areas whereas Pakistan 2013 is suitable for rainfed conditions. The variety Zincol 2016 has high Zn content (35 ppm) in grain as compared to national standard check variety (25 ppm). These varieties are not only higher yielding but also possess good grain quality and other desirable traits. A considerable quantity of seed of the varieties is already present in the national seed system and will reduce the risk of Ug99 threat.

Tags:

Expansion of genetic diversity for winter wheat and selection of new sources of resistance to leaf and stripe rust in South-East

BGRI 2018 Poster Abstract
Gulnura Suleimanova Kazakh National Agrarian University
Yerlan Dutbayev, Alexei Morgounov

Kazakhstan is among the ten largest grain exporters in the world. Winter wheat in Kazakhstan is mainly cultivated in the southern and south-eastern regions on an area of 1.5-2 million hectares, including 140-170 thousand hectares - in irrigated lands. Annual losses of wheat yield from diseases can reach up to 30-40% or more. For Kazakhstan, the most dangerous diseases of winter wheat are stripe rust and leaf rust. Work is under way in Kazakhstan to find new donors for resistance to leaf rust and stripe rust and the use of these donors in breeding. The aim of this research was to expand genetic diversity through crosses and development of lines obtained by the method of remote hybridization, as well as selection of new sources of resistance of bread wheat to leaf rust and stripe rust in southeast Kazakhstan. The subject of the research were 49 hexaploidsynthtic lines of Kyoto University (Japan) and CIMMYT and commercial varieties of winter wheat in the Almaty region. We screened synthetic hexaploid wheat for resistance to diseases. A collection of hexaploid synthetic wheat lines resistant to the diseases and adapted to various conditions of the Almaty region has been established. The character of inheritance of resistance to diseases in crosses of synthetic wheat with local cultivars based on comparison of the first generation and parents was studied. Evaluation of phenotypes inheritance of resistance in hybrids in the generation of F2, showed that 9crosses of synthetic wheat(LANGDON/IG 48042//ZHETISU, LANGDON/IG 48042//FARABI, LANGDON/KU-20-8//AJARLY, LANGDON/KU-2075//AJARLY, LANGDON/KU-2097// ZHETISU, LANGDON/KU-2075//FARABI, LANGDON/KU-2100//STEKLOV, LANGDON/KU-2144//NAZ, LANGDON/KU-2076//NAZ)possess the dominant resistance genes to leaf rust.Seven lines(LANGDON/ KU-2075/AJARLY, LANGDON/KU-2075/FARABI, LANGDON/KU-2092/FARABI, LANGDON/KU-2100/NAZ, LANGDON/KU-2097/STEKLOVINDAYA, LANGDON/KU-2097/ZHETISU, LANGDON/KU-2097/ AJARLY) possess from one to several dominant resistance genes to stripe rust.

Tags:

Pages