All BGRI Abstracts

Displaying 51 - 60 of 415 records | 6 of 42 pages

A large nested association mapping population to map agronomic QTL and smallholder farmers preference in Ethiopian durum wheat

BGRI 2018 Poster Abstract
Matteo Dell'Acqua Scuola Superiore Sant'Anna
Yosef G.,Kidane, Cherinet, Alem, Bogale, Nigir, Dejene, Mengistu, Carlo, Fadda, , , , , , , , , , , , , , , , , , , ,

The Ethiopian plateau hosts thousands of durum wheat landraces cultivated in low input agriculture conducted by an estimated 70 million smallholder farmers. Having thoroughly characterized the phenotypic and molecular uniqueness of Ethiopian durum wheat landraces, we produced a large nested association mapping (NAM) population harnessing their mostly untapped diversity in a set of recombinant inbred lines (RIL). The NAM founders are 50 landraces providing valuable traits such as drought tolerance and resistance to pests, and maximizing molecular diversity. Each selected landrace was crossed to a durum wheat line with an international background (Asassa), establishing independent interconnected bi-parental families, for a total of 6,280 RILs currently in F8. The Ethiopian NAM is at once i) a powerful QTL mapping tool that will side the increasing availability of genomic tools in wheat towards high-throughput candidate genes identification, and ii) a large pre-breeding panel closing the gap between local and international materials. Here we discuss the molecular and phenotypic characterization of twelve NAM families, represented by 100 RILs each. The 1,200 NAM RIL showed elevated allelic variation and a genetic structure reminiscent of the breeding design followed. The NAM RILs were phenotyped for ten agronomic and five disease traits in multiple locations in the Ethiopian highlands. A quantitative method eliciting smallholder farmers traditional knowledge was used to record local farmers appreciation of NAM RILs in all phenotyping locations. We report that the superior genetic properties of the NAM can be used to map QTL for both agronomic and farmer traits with unprecedented precision. The most promising NAM RILs can be identified combining farmers appreciation and agronomic measures, and prioritized for introgression of Ethiopian landraces traits in breeding pipelines aiming at higher uptake and productivity in local agriculture.

Tags:

Identification and characterization of winter wheat germplasm resistant to stem rust in Kenya and Turkey

BGRI 2018 Poster Abstract
Beyhan Akin International Maize and Wheat Improvement Center (CIMMYT), P.K. 39 Emek 06511 Ankara, Turkey
Nilufer,Akci, Sridhar, Bhavani, Mesut, Keser, Fatih, Ozdemir, Ruth, Wanyera, Alexey, Morgounov, , , , , , , , , , , , , , , , , ,

A diverse set of winter wheat germplasm was screened for resistance to stem rust in large-scale trials in Kenya and Turkey during 2009-16. The study aimed to select resistant material and characterize types of resistance and possible genes, as well as evaluate agronomic traits and resistance to other diseases to select superior variety candidates and parental lines. The study material was comprised of various Facultative and Winter Wheat Observation Nurseries (FAWWON), which are developed and distributed by the International Winter Wheat Improvement Program (www.iwwip.org) in Turkey. More than 1600 global accessions were screened, with most evaluated for two years. Based on stem rust data from Kenya, more than 400 genotypes were identified exhibiting adequate levels of resistance to the Ug99 race group. The highest number of resistant lines originated from IWWIP (~170), USA (~100), Russia (~40), Iran (~30), Romania (~20), and South Africa (~20). Material was also tested at two sites in Turkey: Haymana (artificial inoculation) and Kastamonu (natural infection). There was no significant correlation between stem rust severities in Kenya and in Turkey, due to differences in stem rust pathotypes. However, a set of germplasm (more than 100 entries) has been identified as resistant in both countries. This set represents promising material as variety candidates and parental lines; another study is currently identifying the genes controlling the stem rust resistance in this population. IWWIP distributed stem rust resistant germplasm to its global collaborators during 2010-2015, in response to the threat from the Ug99 race group. New resistant germplasm combining broad adaptation, high yields, and resistance to other diseases is available on request.

Tags:

Genetic variability of drought sdaptive traits in nepalese wheat (Triticum aestivum L.) germplasm

BGRI 2018 Poster Abstract
Dipendra Pokharel Department of Agriculture, Sunsari, Nepal

Wheat (Triticum aestivum L.) is one of the major cereal crops vital for global food supply. Most of the wheat crop in developing world including that of Nepal is either grown with limited irrigation or under rainfed conditions and thus face moisture stress at one or more growth stages limiting grain yield. An experiment was carried out at the Institute of Agriculture and Animal Science, Rampur to evaluate the genetic variability of selected drought adaptive traits in Nepalese wheat germplasm. The wheat genotypes evaluated comprised of Nepalese landraces and commercial cultivars, CIMMYT (International Center for Maize and Wheat Improvement) derived advanced introduction lines and three checks with differential drought adaptability. The wheat genotypes were grown in pots (single plant) arranged in a replicated split plot design in greenhouse under two contrasting moisture regimes, optimum and moisture stressed. The genotypes were evaluated for water use, water use efficiency, relative leaf water content and biomass production. The ANOVA (Analysis of Variance) revealed significant variation between environments and among the wheat genotypes for most of the traits studied. A wide range of variability was observed for water use, water use efficiency, biomass yield and relative leaf water content in moisture stressed and non-stressed environments. Nepalese cultivar Gautam showed a number of favorable drought adaptive traits, whereas, Bhrikuti was average in this respect. Based on the scores of drought adaptive traits recently released Cultivar (cv). Vijay was characterized as drought sensitive. A number of landraces and advanced breeding lines showed high level of water use efficiency and other positive traits for drought adaptation.

Tags:

Association of Sr2 and lesion mimic (lm) for multiple disease resistance in wheat

BGRI 2018 Poster Abstract
Sudhir Nawathe Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
Punam Singh Yadav, Ramesh Chand, Vinod Kumar Mishra, Uttam Kumar, Arun Kumar Joshi

The Sr2 gene has been used extensively in bread wheat improvement for durable stem rust resistance. Interestingly, the resistance of Sr2, associated with the pleotrophic gene Pbc expressed as pseudo-black chaff (PBC), is tightly linked with Yr30/Lr27/Pm genes conferring multiple disease resistance. The linkage map of chromosome 3BS revealed that Sr2 is 0.43cM away from lesion mimic (lm) locus. The RIL population (Yangmai#6 ? Sonalika) of 88 lines including parents where Sonalika carries Sr2 and lm while Yangmai#6 is deficient to both was evaluated for three years (2013-2016). The objective was to determine if this fragment is inherited as one unit and provides resistance to multiple diseases. Twenty four SSR markers distributed between 0.00 to 7.09cM on 3BS covering both Sr2 (5.57cM) and lm locus (6.0cM) were studied in the RIL population. Phenotyping was done for Sr2 associated PBC and lesion mimic along with disease severity for leaf rust, and spot blotch. Positive and significant correlations were observed between leaf stem rust resistance with Sr2 carrying PBC and lm. However, lines with lm either alone or with Sr2 (showing PBC) exhibited spot blotch susceptibility. The reverse situation does not hold not true where genotypes carrying Sr2 alone showed no correlation with spot blotch resistance. This indicates that the Sr2 complex is inherited as a single unit. Use of 24 SSR also suggest that Sr2 and lm loci are tightly linked and inherited together. The co-inheritance of Sr2 and lm ensures the stability and durability of rust resistance. However, the discouraging observation of spot blotch susceptibility due to lm gene suggests a limitation in achieving multiple disease resistance in environments where spot blotch is important. We identified two transgressive segregates in the population showing least expression of lm despite the presence of Sr2 and lm together.

Tags:

New QTL for leaf rust and stripe rust resistance in four bread wheat and two durum wheat mapping populations

BGRI 2018 Poster Abstract
Caixia Lan CIMMYT
Ravi,Singh, Julio, Huerta-Espino, Mandeep, Randhawa, , , , , , , , , , , , , , , , , , , , , , , ,

Wheat leaf rust (LR) and stripe rust (YR), caused by the air-borne fungi Puccinia triticina (Pt) and Puccinia striiformis f. sp. tritici (Pst), respectively, are considered the primary biotic threats to bread wheat and durum wheat production globally. Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by these diseases. Bread wheat lines Francolin #1, Kenya Kongoni, Kundan and Sujata, and CIMMYT-derived durum wheat lines Bairds and Dunkler display an adequate level of adult plant resistance (APR) to both leaf rust and stripe rust in Mexican field environments. Six recombinant inbred line (RIL) populations developed from crosses Avocet/Francolin #1, Avocet/Kenya Kongoni, Avocet/Kundan, Avocet/Sujata, Atred#1/Bairds and Atred#1/Dunkler were phenotyped for leaf rust response at Ciudad Obregon, Mexico, and the bread wheat populations for stripe rust response at Toluca for under artificial inoculations for multiple seasons. The RIL populations and their parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. Known pleotropic APR genes Lr46/Yr29 mapped in all of six populations, and explained 7.4-65.1% and 7.7-66.1% severity variations for LR and YR across different bread wheat populations and accounted for 12.4-60.8% of LR severity variations over two durum wheat populations. In addition, several new APR loci identified on chromosomes 1AS, 1DS, 2BS, 2BL, 3D and 7BL in bread wheat and QTL on chromosome 6BL in durum wheat. Among these loci, QTL on chromosomes 1AS, 3D and 7BL might be represent new co-located/pleotropic loci conferring APR to LR and YR. RILs combining these APR loci can be used as sources of complex APR in both bread wheat and durum wheat breeding. In addition, the closely linked single nucleotide polymorphism (SNP) markers have been converted into breeder-friendly kompetitive allele specific PCR (KASP) markers and their diagnostic verified.

Tags:

Introgression of Sr50 and SrWeb genes in hexaploid wheat using molecular markers for enhancing stem rust resistance

BGRI 2018 Poster Abstract
Punam Singh Yadav Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
Vinod Kumar Mishra, Uttam Kumar, Ramesh Chand, Akhilesh Mishra, Arun Joshi

Ug99 is a devastating race of Puccinia graminis f.sp. tritici possessing virulence against resistant genes Sr31 and Sr24. This race is highly adoptive and has spread quite rapidly with 13 known variants covering 13 different countries. For reducing the vulnerability of wheat in south Asia to the Ug99, breeding durable resistant varieties is important. India, second largest wheat producer, falls in the predicted pathway of Ug99. Most of the Indian germplasm possesses Sr31 and Sr24 in their background. HUW468, a well adopted variety of north eastern plains zone (NEPZ) of India, carries durable resistance gene Sr2. To strengthen it, a MABB program was initiated to introgressed two major genes (Sr50 and SrWeb) using a donor line PMBWIR4 from CIMMYT. The foreground selection was performed with Xgwm47 for SrWeb and IB267 for Sr50 followed by the background selection by using 128 polymorphic SSR markers covering all chromosomes. Backcross progenies of HUW468 were screened in the field condition by using of Pgt race 21A-2 at IARI, Regional Station, Indore located in the central India. Superior selected lines from BC2F4:5 generation was planted at three locations in India namely; Varanasi, Indore and Dharwad. HUW468-09-25-47-09 and HUW468-09-25-47-56 were selected from BC2F5 generation having Sr50 and SrWeb along with Sr2 gene, superior agronomic performance and with 93.5% and 92.7% genome recovery, respectively. These two lines also possess 6-10 % yield superiority over the recipient parent HUW468. These lines have been submitted for registration in NBPGR (National Bureau of Plant Genetic Resources), India.

Tags:

Accelerated Cloning and Characterization of Adult Plant Resistance Genes in Wheat

BGRI 2018 Poster Abstract
Sreya Ghosh John Innes Centre
Burkhard,Steuernagel, Caixia, Lan, Miroslava, Karafi?tov?, Ksenia, Krasileva, Jaroslav, Dole?el, Evans, Lagudah, Ravi, Singh, Brande, Wulff, , , , , , , , , , , , , ,

Adult Plant Resistance (APR) genes are broad-spectrum, partial-resistance genes that have the potential to contribute to sustainable control of wheat rust diseases. However, their isolation and characterization are complicated by the lack of precise molecular markers required for their identification, and therefore their use in plant breeding programs has been limited. Recent developments including the falling cost of sequencing and the increasing use of sequence capture methods to reduce genome complexity have enabled previously intractable methods such as mutational genomics to clone genes in wheat. Despite their increasing ease of use, many of these approaches require prior knowledge of the gene space and, in some cases, the gene family of the target gene to be cloned. As the APRs cloned so far do not belong to any common gene family, it is not possible to use general features of these identified APRs to conduct biased searches for novel APRs. This project aims to use an unbiased gene isolation technique called MutChromSeq, which combines chromosome flow-sorting and mutational genomics, and is independent of fine mapping, to rapidly clone the recently discovered APR gene Lr68 (Leaf Rust 68). Cloning APRs allows breeders to trace genes cheaply and quickly using gene-specific markers, enabling them to build effective and durable resistance gene pyramids. It also allows us to elucidate any common mechanism of action they have, helping researchers and breeders understand better the basis of their durable resistance. At the same time, the generation time of wheat has become one of the major limiting factors for the response time of breeders to rust epidemics. Thus, this project also aims to combine marker-assisted selection with accelerated generation advancement ('speed breeding') for rapid germplasm structuring and field performance evaluation.

Tags:

Histopathological characterization of R-gene mediated resistance to stripe rust in wheat

BGRI 2018 Poster Abstract
Kamran Saleem Department of Agroecology, Aarhus University, Denmark
Chris Khadgi,S?rensen, Annemarie Fejer, Justesen, Mogens St?vring, Hovm?ller, , , , , , , , , , , , , , , , , , , , , , , ,

Wheat yellow (stripe) rust is a recurrent problem throughout the world, and resistant varieties are an efficient means of managing the disease. Therefore, characterization of diverse sources of resistance is of prime importance for wheat breeding. The objective of the study was to investigate variation in host response in incompatible interactions conferred by different R-genes. Epifluorescence and confocal microscopic methods were utilized for histopathological investigation of six yellow rust R-genes (Yr1, Yr5, Yr6, Yr15, Yr17 and Yr27) in Avocet S background, with Avocet S as the control. Fungal colony size and area of hypersensitive response (HR) were assessed for each interaction at 4, 8 and 16 days post inoculation (dpi). The pattern for Avocet Yr15 was distinct, because HR arrested the pathogen very early and rapidly restricted pathogen growth. Avocet Yr1 and Avocet Yr5 showed a less rapid HR and restriction of pathogen growth, but most colonies were completely surrounded by HR at 8 and 16 dpi. In Avocet Yr6 the size of colonies and the extent of HR were highly variable with continuous change up to 16 dpi. More extensive pathogen growth was observed in Avocet Yr17 and Avocet Yr27, where HR induction was delayed, resulting in large intermingled colonies at 16 dpi. All interactions were clearly different from the susceptible control. Thus each R-gene produced a different temporal and spatial distribution of fungal colonies and HR response. Colony size distributions and HR response patterns are potential parameters for characterization of host resistances with different modes of action in wheat against Pst. The results also expand our comprehension of host resistance in wheat against P. striiformis.

Tags:

Contribution of peduncle traits to grain yield under terminal drought and compensatory effect of stem reserve mobilization

BGRI 2018 Poster Abstract
Dejan Dodig Maize Research Institute Zemun Polje
Dragana Ranćić, Vesna Kandić, Biljana Vucelić-Radović, Jasna, Savić, Miroslav Zorć

When environmental stress develops during reproductive phases of growth, wheat plants have to rely increasingly on remobilisation of previously stored assimilates to maintain grain filling. The present study was undertaken to determine the effect of several peduncle (the uppermost stem internode) morpho-anatomical and biochemical traits on grain weight, and to assess the contribution of the peduncle water-soluble carbohydrate (WSC) reserves shortly after anthesis to its variation. In 2-year field trials, 61 wheat genotypes were used (27 F4:5 families, 17 parents used for the crosses and the 17 current best standards) comparing intact control plants (CP) with plants that were defoliated (DP) by cutting off all leaf blades 10 days after anthesis to simulate terminal stress. Estimated contributions of peduncle assimilate reserves to grain weight/spike were from 0.06 to 0.31% and from 0.11 to 0.45% in CP and DP plants, respectively. High peduncle reserve mobilization efficiency, a longer exposed part of the peduncle and larger peduncle storage capacity (through higher parenchyma and/or lower lignified area) were of specific benefit for maintaining grain weight in defoliated plants. There was a large difference in compensation of grain yield loss by dry matter remobilization within studied genotypes (in average 1.2-36.1%). Although compensation of yield loss might be improved through breeding process (our F4:5 families had slightly higher mean compensation effect than their parents under moderate stress), it does not mitigate the effect of post-anthesis drought in great extent (up to 38.4%).

Tags:

Utilization of Jordanian durum wheat (Triticum turgidum ssp durum) landraces for crop improvement in dry areas

BGRI 2018 Poster Abstract
Ayed Al-Abdallat Faculty of Agriculture, The University of Jordan
Moneer Mansour, Nasab Rawashdah, Rabei Sayaydeh

Durum wheat (Triticum turgidum subsp. durum) landraces are rapidly disappearing from the main wheat production areas in the Fertile Crescent. Such local landraces are most likely contain geographically specific, ectopically adapted alleles or gene complexes for their harsh environments. A panel of 156 durum wheat landraces and released varieties were assembled from historical collections deposited in national and international gene banks and from a recent active collection mission from selected areas across Jordan. The panel were evaluated under field conditions in two different locations for one growing season. Data for days to heading, plant height, peduncle length, number of spikes spike length, spike weight, grains number, grains weight, number of kernels per spike and thousand-kernel weight were recorded. Results indicate the existence of a wide variation between the tested genotypes for all tested agronomical traits. For heading date, the Jordanian landrace "JDu103" was the earliest under dry environment conditions. Regarding grains weight and spike weight, the Jordanian landrace "JDu105" produced the highest mean value under humid conditions. Another landrace "JDu46" produced the longest spikes and the highest TKW mean value, while the Jordanian landrace "JDu105" produced the heaviest spikes weight mean value, while "JDu100" produced the highest grains number. For molecular analysis, total genomic DNA was extracted from each genotype and then used for SNP genotyping using Illumina iSelect wheat 90k SNP chip. Structure analysis showed that the analyzed durum wheat panel can be divided into three genetically distinct subgroups. The GWAS analysis identified 93 significant markers-traits associations for multiple traits with two QTLs located at 7A and 7B, which seems important for TKW in durum wheat under dry environments. In conclusion, the Jordanian landraces used in this study showed wide genotypic and phenotypic variability, which can be considered by plant breeders for their future use in breeding programs.

Tags:

Pages