All BGRI Abstracts

Displaying 411 - 415 of 415 records | 42 of 42 pages

Association mapping of resistance to stripe rust in a globally diverse panel of wheat accessions

Ng The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Australia

Effective control of stripe rust (YR) requires deployment of resistant cultivars. Adult plant resistance (APR) is preferred over all-stage resistance because of its putatively durable nature. Discovery of new sources of resistance is a priority to combat rapidly evolving Pst races. Genebanks contain untapped genetic diversity that likely harbor novel resistance genes. We examined a diverse panel of 300 lines sourced from the Vavilov Institute, including landraces, cultivars and breeding lines from 28 countries. The most virulent Pst pathotype in Australia (134 E16 A+,Yr17+,Yr27) was used for all experiments, where YR reactions were determined on seedlings in a greenhouse and on adult plants in a field disease nursery. A total of 54% of accessions displayed all-stage resistance and 33% displayed moderate to high levels of APR. Accessions were genotyped using the DArTseq genotyping platform and using an association mapping approach we identified genomic regions associated with YR resistance. These were aligned with previously reported QTL and cataloged resistance genes on a consensus map. This enabled identification of novel genomic regions. Accessions carrying high levels of APR were screened using markers linked to well-known APR genes (i.e. Yr18, Yr29 and Yr46). Twenty two accessions carrying potentially novel sources of APR to YR were identified. Our current efforts are aimed at further characterizing and validating these genetic resources against a wide array of pathotypes and environments around Australia.

Tags:

Genetics of stem rust resistance in tetraploid wheats (Triticum turgidum ssp.)

Olivera Department of Plant Pathology, University of Minnesota, USA

Our research objective is to identify new resistance genes in cultivated and wild tetraploid wheats that are effective against race TTKSK and other Pgt races, and could be utilized in durum breeding. We characterized 7,000 durum and 360 emmer accessions for field resistance at Debre Zeit, Ethiopia, and Saint Paul, Minnesota. Accessions with resistant to moderately resistant responses in multiple field evaluations were characterized at the seedling stage for resistance to races TTKSK, TRTTF, TTTTF, JRCQC, TKTTF, and an additional six representative U.S. races. We identified 208 durum and 28 emmer accessions resistant to moderately resistant in all field and seedling evaluations. A search for resistance through seedling evaluations was also conducted on wild emmer (840 accessions) and four cultivated tetraploids (Persian, Polish, Oriental, and Pollard wheats, 560 accessions). About 20% of the accessions were resistant to race TTKSK. Thirty-six resistant accessions of cultivated and wild tetraploids were selected to investigate the genetics of TTKSK and TRTTF resistance. Results from evaluating F2 and F2:3 generations from biparental crosses revealed that resistance to race TTKSK in various subspecies of T. turgidum was conferred mostly by one or two genes with dominant and recessive actions. Additional resistance genes were identified when populations were evaluated against race TRTTF. A bulk segregant analysis approach is being used to map the resistance genes in selected resistant parents using the 90K SNP platform.

Tags:

Pst pathotypes and Yr gene postulation in Tunisian wheat

Hamza National Institute of Agronomy, Tunisia

Yellow rust is a widely distributed wheat disease, that is more damaging in cooler, temperate regions. Epidemics have increased worldwide due to spread of aggressive high temperature tolerant strains PstS1/S2 that reached North Africa and southern France in 2004 and the widely virulent exotic Warrior race that spread in Western Europe in 2011. Resistant varieties are effective solutions to reduce the use of pesticides. However, races of the pathogen quickly overcome resistance genes. Therefore, selection of varieties with durable resistance to yellow rust is paramount for protection of both bread wheat and durum. To conduct a genetic control strategy, it is essential to study the pathotype dynamics and the resistance genes in wheat. We identified the pathotypes using the European and world differential sets that discriminate between 23 avirulence/virulence factors as well as simple sequence repeat (SSR) diversity among 20 Pst isolates collected in Tunisia in 2014. In addition, we postulated resistance genes in 28 Tunisian varieties and accessions at the seedling stage in order to identify the resistance diversity. Race 239 E175V17 was involved in the 2014 epidemic in Tunisia. Genetic analysis revealed that this race is exotic and distinct from the Northwestern European and Mediterranean groups, previously present in Tunisia. Resistance gene postulation indicated the presence of Yr3, Yr6, Yr7, Yr9+Yr4, and Yr25 in Tunisian varieties and accessions. Durum varieties Khiar and Salim, and bread wheat variety Tahent, were resistant to the local Northwestern European and Western Mediterranean pathotypes as well as the Warrior race. These varieties are thus short-term measures to address the yellow rust problem in Tunisia. Gene identifications will be confirmed by molecular and pedigree analyses of the accessions.Yellow rust is a widely distributed wheat disease, that is more damaging in cooler, temperate regions. Epidemics have increased worldwide due to spread of aggressive high temperature tolerant strains PstS1/S2 that reached North Africa and southern France in 2004 and the widely virulent exotic Warrior race that spread in Western Europe in 2011. Resistant varieties are effective solutions to reduce the use of pesticides. However, races of the pathogen quickly overcome resistance genes. Therefore, selection of varieties with durable resistance to yellow rust is paramount for protection of both bread wheat and durum. To conduct a genetic control strategy, it is essential to study the pathotype dynamics and the resistance genes in wheat. We identified the pathotypes using the European and world differential sets that discriminate between 23 avirulence/virulence factors as well as simple sequence repeat (SSR) diversity among 20 Pst isolates collected in Tunisia in 2014. In addition, we postulated resistance genes in 28 Tunisian varieties and accessions at the seedling stage in order to identify the resistance diversity. Race 239 E175V17 was involved in the 2014 epidemic in Tunisia. Genetic analysis revealed that this race is exotic and distinct from the Northwestern European and Mediterranean groups, previously present in Tunisia. Resistance gene postulation indicated the presence of Yr3, Yr6, Yr7, Yr9+Yr4, and Yr25 in Tunisian varieties and accessions. Durum varieties Khiar and Salim, and bread wheat variety Tahent, were resistant to the local Northwestern European and Western Mediterranean pathotypes as well as the Warrior race. These varieties are thus short-term measures to address the yellow rust problem in Tunisia. Gene identifications will be confirmed by molecular and pedigree analyses of the accessions.

Tags:

Durable rust resistance - Understanding “R” and “APR” in cereal hosts

Zhang National Research Council of Canada, Canada

Leaf rust is the most widely occurring disease of wheat worldwide. Resistance is the most practical and effective way to control the disease. Most leaf rust resistance genes are race-specific (“R”, qualitative resistance) and a relatively few are adult plant resistance genes, some of which have been described as slow rusting (“APR”, quantitative resistance). Due to limited knowledge, most resistance genes have been deployed in cultivars by an inefficient “blind” approach. This results in the well known “boom and bust cycle” (resistance followed by susceptibility) because the pathogen evolves rapidly and migrates over long distances. Therefore, a breeding-by-design approach is needed to achieve durable resistance. Pyramiding multiple R, APR or APR+R genes has been used successfully over many years to achieve durable resistance to leaf rust in Canada and some other countries. To further enhance this strategy we seek to understand the molecular mechanisms underlying key resistance genes. To identify the molecular mechanisms underlying rust resistance conferred by major R and APR genes, we performed an integrated systemic transcriptome analysis via RNA-seq on the Thatcher NILs with Lr16, Lr22a, Lr21, Lr34, Lr34+Lr16, and Lr67 challenged with Pt race BBBD. Sampling was conducted over a time series during the infection process of both seedlings and adult plants. Through RNA-seq we were able to capture the dynamic interactome of host-pathogen interactions conferred by these R and APR genes. Preliminary results revealed that resistance reactions conferred by R gene Lr21 and APR gene Lr67 were significantly different compared to other R and APR genes. Significantly, the Thatcher NIL line with Lr34+Lr16 showed the combines defense reactions of Lr16 and Lr34.     

Tags:

Progress in simultaneous selection for stable, high yielding, rust resistant wheat genotypes for Kenya

Macharia Kenya Agricultural and Livestock Research Organization, Kenya

In the past decade Pgt race Ug99 and its variants have been a challenge to wheat production in Kenya. Towards identifying suitable varieties, 37 lines selected from rust screening nurseries and 3 checks were tested for yield and adult plant reaction to natural stem rust epidemics across 11 diverse Kenyan environments in 2013 and 2014. Trial locations were chosen to mainly represent key wheat growing areas as well as three new sites. Evaluations based on the AMMI linear-bilinear model indicated significant (P≤0.01) genotype (G), environment (E), and GE interactions with the first three principal components (PC) explaining ~70% of the observed variation. With a contribution of over 90% to total sum of squares, environment was the predominant source of variation and the genotypic effect was approximately twofold higher than the GE effect. Based on biplot projections, clusters of lines were most closely associated with specific environments. Biplots also pointed to at least five environments, clearly those in traditional wheat growing areas that were highly correlated and associated with positive PC suggesting a similar ability to discriminate genotypes. Each non-traditional testing environment was associated with negative PC and was uncorrelated in its discriminatory ability. Combined yield and stability results achieved through classifying genotypes based on Shukla’s stability variance and Kang’s stability rating, revealed four genotypes (R1357, R1362, R1372, and R1374) as desirable candidates. The hitherto popular variety Robin, used as the ‘best check’ for yield, posted an at least 10% lower yield relative to the highest yielding genotype (R1357). Moreover, Robin which was released as a high yielding variety with adult plant resistance in 2009, was not stable in performance across environments, perhaps due its current susceptibility to a new Pgt race (TTKTT) within the race Ug99 group, that is virulent to the SrTmp-based resistance.

Tags:

Pages