All BGRI Abstracts

Displaying 41 - 50 of 415 records | 5 of 42 pages

Response of durum wheat genotypes to rust in preliminary and regular yield trials

BGRI 2018 Poster Abstract
Iqra Ghafoor Wheat Research Institute, Ayub Agricultural Rsearch Institute Faisalabad
Amna Kanwal, Mehwish Makhdoom, Javed Ahmed, Makhdoom Hussain

Wheat is the most important cereal crop in Pakistan because it contributes major portions of daily calorie intake. Rust is an increasing threat to wheat production and ultimately food security in Asian countries. The purpose of the present study is to identify the suitable wheat lines that could significantly resist rust pathogen without compromising yield. 60 durum wheat lines, entered in preliminary and regular yield trials, were tested for various morphological and physiological traits along with adult plant disease reaction under natural rust infestation. Results indicated that there was higher incidence of yellow rust as compared to leaf rust as ten genotypes were susceptible to leaf rust. Whereas seven lines were moderately susceptible, 14 were moderately resistant and two were completely susceptible to yellow rust. These findings suggested that future breeding program should be directed towards the developments of resistant cultivars that could resist variable strains of rust pathogen under changing climatic conditions.

Tags:

Preliminary results on stem rust disease in a winter wheat landrace population from Central and Western Asia

BGRI 2018 Poster Abstract
Kadir Akan Ahi Evran University, Agriculture Faculty, Plant Protection Department K?rsehir/Turkey
Nilofer Akci, Marta da Silva Lopes

Stem rust (Puccinia graminis f. sp. tritici) is a fungal disease that can significantly reduce wheat yields and quality. The goal of this study was to screen 281 winter bread wheat landraces genotypes for their reaction to stem rust disease in seedling and adult plant stage.
For seedling stage, the experiment was carried out under greenhouse conditions in Field Crops Central Research Institute in Ankara, Turkey during 2017 growing season. The genotypes were grown at 20?4?C under greenhouse condition and inoculated (avirulent on Sr24, 26, 27, and 31 resistance genes) with urediniospores in mineral oil suspension at Zadoks growth stage 11 or 12. After inoculation, the genotypes were incubated at 20?1?C with 100% humidity during 24 hours then at 18-25?C. Scoring took place after 14 days using a 0-4 scale. Infection types on the susceptible checks (cv. Gun-91 and Thatcher) were 3+ scores. For adult plant reactions, the genotypes were screened under natural epidemic conditions for Pgt (virulent on Sr5, 6, 7b, 8a, 8b, 9b, 9g, 10, 30, Tmp and Mcn resistance genes) in Seydiler-Kastamonu, Turkey. The materials were sown in a one-meter row with three replications. Stem rust development on each entry was scored using the modified Cobb scale (Little Club had reached 80-100S) in August 2017. Coefficients of infections were calculated and values below 20 were considered to be resistant.
Two (1%) (Seedling stage) genotypes and 15 (5%) (Adult stage) genotypes were resistant to Pgt. The resistance genotypes identified in this study can be used in breeding programs. SNP markers will be identified for stem rusts resistance identified in the landrace population.

Tags:

Existence of divergent lineages, virulence phenotypes and DNA methylation in the Canadian Puccinia striiformis population

BGRI 2018 Poster Abstract
Gurcharn Singh Brar Crop Development Centre/Department of Plant Science, University of Saskatchewan, Saskatoon, Canada
Sajid Ali, Dinah Qutob, Steve Ambrose, Ron Maclachlan, Kun Lou, Curtis Pozniak, Yong-Bi Fu, Andrew Sharpe, Randy Kutcher

Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is one of the most important pathogens of wheat. Attempts have been made in the past to characterize the worldwide genetic structure of Pst populations, excluding Canada. Characterization of 59 isolates identified 33 races with three most common races representing half of the population and subtle differences in races of eastern and western prairies. For molecular characterization, 48 isolates were sequenced to obtain SNPs and genotyped with Pst-specific SSR markers. Isolates that were suspected of recombination based on SNP data were examined for their telia production ability as a proxy for sexual recombination. The study revealed that the majority of the population was clonal, however, not exclusively clonal, with the existence of four genetic lineages. Two lineages previously reported were identified: PstS0, representing an old northwestern-European and PstS1, an invasive warmer-temperature adapted lineage. Additionally, two new lineages, PstPr and PstS1-related, were detected that have not been reported previously. The PstPr and PstS1-related lineages produced more telia than the other lineages and had double the number of unique recombination events compared to PstS0 and PstS1. PstPr was concluded to be a sexual recombinant and an exotic incursion, which was closely associated with PstS5, PstS7 (Warrior), and PstS8 (Kranich) lineages, all of which arose by sexual recombination in the center of diversity - the Himalayan region. The total phenotypic variation in the population could not be explained solely by molecular genotypes, and a hypothesis on existence of epigenetic machinery in the Pst genome was tested. Homologs of the DNMTases class (DNMT1) were identified, providing compelling evidence of a role for DNA methylation. As a first report of DNA methylation, an average of ~5%, 5-methyl cytosine (5-hmC) in the Puccinia epigenome indicated the possibility of epigenetic regulation, which merits further investigation.

Tags:

Triticum araraticum: A source of leaf rust and stripe rust resistance genes

BGRI 2018 Poster Abstract
Rohtas Singh School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana-141004 India
Ahmed Elkot, Satinder Kaur, Parveen Chhuneja

Stripe rust and leaf rust are two most widely distributed diseases of wheat despite the fact that major emphasis has been made globally to develop rust resistant varieties. The wild tetraploid wheat Triticum araraticum (AAGG) evolved in the eastern part of Fertile Crescent is a source of useful traits for the improvement of wheat including resistance to disease. T. araraticum acc. pau4692 and a derived advanced backcross introgression line (IL) in susceptible T. durum cv. Malvi local background showed high level of seedling resistance against Indian pathotypes of leaf rust and stripe rust. The F5 Single seed descent (SSD) population developed from the crosses between T. araraticum IL with T. durum cultivar PBW114 was screened with commonly prevalent pathotypes of leaf rust and stripe rust in India at the seedling stage. The genetic analysis indicated that the leaf rust resistance is conditioned by two genes and stripe rust resistance by a single gene. The SSR markers mapped on A and B genome were used for parental polymorphism along with resistant and susceptible bulks for leaf rust and polymorphic markers between bulks were used on the whole population. The molecular marker data using single marker analysis showed that leaf rust resistance genes were mapped on chromosome 2A and 7A linked to SSR markers Xwmc149 and Xbarc49, respectively. The genes have been temporarily named as LrAr1 and LrAr2. Bulked segregant analysis (BSA) for mapping stripe rust resistance is in progress.

Tags:

Genetic variability of drought sdaptive traits in nepalese wheat (Triticum aestivum L.) germplasm

BGRI 2018 Poster Abstract
Dipendra Pokharel Department of Agriculture, Sunsari, Nepal

Wheat (Triticum aestivum L.) is one of the major cereal crops vital for global food supply. Most of the wheat crop in developing world including that of Nepal is either grown with limited irrigation or under rainfed conditions and thus face moisture stress at one or more growth stages limiting grain yield. An experiment was carried out at the Institute of Agriculture and Animal Science, Rampur to evaluate the genetic variability of selected drought adaptive traits in Nepalese wheat germplasm. The wheat genotypes evaluated comprised of Nepalese landraces and commercial cultivars, CIMMYT (International Center for Maize and Wheat Improvement) derived advanced introduction lines and three checks with differential drought adaptability. The wheat genotypes were grown in pots (single plant) arranged in a replicated split plot design in greenhouse under two contrasting moisture regimes, optimum and moisture stressed. The genotypes were evaluated for water use, water use efficiency, relative leaf water content and biomass production. The ANOVA (Analysis of Variance) revealed significant variation between environments and among the wheat genotypes for most of the traits studied. A wide range of variability was observed for water use, water use efficiency, biomass yield and relative leaf water content in moisture stressed and non-stressed environments. Nepalese cultivar Gautam showed a number of favorable drought adaptive traits, whereas, Bhrikuti was average in this respect. Based on the scores of drought adaptive traits recently released Cultivar (cv). Vijay was characterized as drought sensitive. A number of landraces and advanced breeding lines showed high level of water use efficiency and other positive traits for drought adaptation.

Tags:

Genetic variability in bread wheat (Triticum Aestivum L. ) accessions using functional and random DNA Markers

BGRI 2018 Poster Abstract
Kachalla Kyari Mala Lake Chad Research Institute, Maiduguri, Borno State-Nigeria
Dattijo Aminu, Zakari Goji Silas Turaki, Fatima Henkrar, Udupa Sripada

The research was conducted at ICARDA, Rabat. Twenty-four accessions were obtained from LCRI for marker analysis. Wizard Genomic DNA Purification Kit was used for DNA extraction. DNA was extracted by CTAB method and quantified using 1.0 % (w/v) agarose gels. Total of 12 loci, 5 functional and 7 linked random DNA markers to the traits of interest were used. PowerMarker and DARwin software were used to calculate the No. of alleles and values of genetic diversity, PIC, genetic distance, and NJ dendrogram. The total No. of detected alleles was 39; and mean No. of alleles was 3.25. No. of alleles range from 1 (Dreb-B1) to 9 (Xgwm577). Genetic diversity index ranged from 0.0000 in Dreb-B1 to 0.8471 in Xgwm577. The PIC value was also varied from 0.0000 (Dreb-B1) to 0.8296 (Xgwm577). The frequency of biotic resistance linked random DNA marker allele at Xgwm144 and Xwmc44, associated with yellow and leaf rust gene was 25% each. Marker alleles Xgwm577 and Xgwm533 linked to Stb2 and Stb8 at 150 and 120bp have frequencies of 21 and 4%. The frequency of abiotic resistance showed 50% of accessions had 1R segment (1BL.1RS translocation) and 58% of accessions showed presence of 120bp allele of Xwmc89, associated with QTL for drought tolerant. Functional marker alleles of Dreb-B1 associated with drought tolerant genes showed alleles frequency in all accessions. Linked marker allele Xgwm111 linked to heat tolerant gene showed 17% allele frequency at 220bp. Rht1 and Rht2, the allele frequencies were 92 and 4%. 92% of the cultivars had photoperiod insensitive allele at Ppd-D1 locus. VrnA1a and VrnA1c primer pair amplified at 965, 876, and 484bp, allele frequency of 13 and 87%. Cluster analysis had grouped the accessions into 5 at a genetic distance level 0.15.

Tags:

Durum wheat adaptation and yield formation as affected by Ppd-1 photoperiod sensitivity genes

BGRI 2018 Poster Abstract
Dolors Villegas Institute of Agriculture and Food Research and Technology
Karim Ammar, Susanne Dreisigacker, Josí María Arjona, Conxita Royo

Understanding the effect of genetic factors controlling flowering time is crucial to fine-tune crop adaptation to each target environment and maximize yield.
A set of spring durum wheat inbred lines carrying all but one of the possible allelic combinations at Ppd-A1 and Ppd-B1 genes was developed through a collaboration between IRTA and CIMMYT. The collection was grown during several years at four sites at latitudes ranging from 19?N to 41?N in order to assess the effect of Ppd-1 genes on development, biomass production and allocation, as well as grain yield formation.
Environmental constraints were responsible for most of the observed variation for flowering time and yield components. Latitude was a main driver of flowering time, which was later in northern sites and associated with lower minimum temperatures before flowering. Data on environmental constraints explaining a large proportion of grains m-2 and kernel weight variation will be presented. The effect on flowering time of Ppd-A1 alleles conferring photoperiod insensitivity was enhanced at sites with average daylength before flowering lower than 12h. Ppd-A1 caused a stronger effect on flowering time than Ppd-B1, which was found responsible for differences in grains m-2, associated with longer photoperiods from double-ridge to terminal spikelet stages. These differences in grains m-2, however, did not result in higher yields due to kernel weight compensation. Late flowering genotypes carrying alleles conferring photoperiod sensitivity had greater biomass at anthesis but it did not confer superior yields. Early flowering times were associated with higher yields in autumn-sowing sites due to a large contribution to yield of current photosynthesis during grain filling. Early flowering genotypes tended to yield more due to higher kernel weights, and the interaction of allele combination x environment will be discussed in the context of using allelic information as environment-specific guideline in breeding efforts.

Tags:

Building upon past successes for a continued impact on production and food security through breeding high yielding climate change resilient durum wheat varieties

BGRI 2018 Poster Abstract
Mohamed Salah Gharbi National Institute of Agriculture Research, Tunisia

Meeting food security challenges is a high priority in many developing countries. North African countries are among those with the highest per capita wheat consumption in the world and chronic grain deficits. Climate change scenarios predict decrease of rainfall and increase of temperature with negative impact on crop production and hence food security. Along with adoption of modern technologies, breeding higher yielding and more climate change resilient wheat varieties is widely seen as a tool that can sustain past yield gains and food production increases. Durum wheat production in Tunisia greatly benefited from the green revolution ingredients. Continued breeding lead to replacement of the early semi dwarf varieties with higher yielding, better disease resistant and more drought tolerant ones that have positively impacted yield at farmer and national level. Monitoring gains from increased yield potential and resistance to the most damaging foliar diseases, mainly septoria leaf blotch, leaf rust and stripe rust, showed that grain yield of recently released varieties is up to four times that of the tall late maturing landraces grown before the 1970's and up to 2.5 times that of varieties of the early years of the green revolution. Chlorophyll content, green leaf duration, deeper root development from diverse donors including wild wheat relatives and grain yield are being integrated in the breeding program for the selection of more drought and heat stress tolerant durum cultivars

Tags:

Aecial infection status of Berberis spp. in Kastamonu province of Turkey

BGRI 2018 Poster Abstract
Nil?fer Akci Central Research Institute for Field Crops, Yenimahalle, Ankara, Turkey
Aziz Karakaya

Berberis species are important alternate hosts and generate new races of stem rust fungus, Puccinia graminis f. sp. tritici and yellow (stripe) rust fungus Puccinia striiformis. Berberis species are common in Kastamonu province of Turkey. In 2016 and 2017, surveys were conducted in Kastamonu province in order to elucidate aecial infection status of Berberis species in this region. In 2016, the central region and A?l?, Ara?, Daday, ?hsangazi, Seydiler, Ta?k?pr? and Tosya regions and in 2017 central region and Ara?, Daday, Han?n?, P?narba??, Seydiler, Ta?k?pr? and Tosya regions of Kastamonu province were investigated. It appears that there are at least two different Berberis species exist in that area. Berberis species showed variation in terms of fruit color and morphological characters. In 2016, 50 Berberis plants were examined and aecia were present in 38 plants (76%). Percentage of plants parts infected with aecia ranged between 3-80%. In 2017, 64 Berberis plants were examined. Aecia were present in 34 plants (53%). Percentage of plants parts infected with aecia ranged between 3-85%. Aecia were mainly observed on leaves but also observed on other plant parts including flower parts, fruit and young twigs. The role of these aecia and Berberis spp. on rust diseases in Kastamonu province of Turkey should be investigated.

This study was supported by General Directorate of Agricultural Research and Policies, Turkey (Project No: TAGEM-BS-15\12-01\02-02).

Tags:

Harnessing the predictive power of epidemiological modelling for wheat yellow rust disease

BGRI 2018 Poster Abstract
Vanessa Bueno-Sancho John Innes Centre
Christopher,Judge, Francesca, Minter, Nik, Cunniffe, Richard, Morris, Diane, Saunders, , , , , , , , , , , , , , , , , , , ,

Wheat yellow rust is a disease caused by the fungus Puccinia striiformis f. sp tritici (PST) that is a significant threat to wheat production worldwide. Recently, a novel approach called "Field Pathogenomics" was developed that allows acquisition of genotypic data from field samples of PST-infected wheat. This has enabled us to study the re-emergence of this pathogen in the UK and understand the different races that form the current PST population. However, the dynamics of pathogen transmission and dispersal still remain unknown and understanding this is essential for designing effective surveillance. The objective of this project is to develop a spatially-explicit model for the spread of PST that can contribute to better management of the disease and be used as a warning system for wheat yellow rust infection in the UK. The first aim is to study how PST spreads at the field level and determine whether there are differences between PST races in terms of disease dynamics. To this end, a set of markers have been designed that can be used to genotype field-collected isolates and determine which race they belong to. Field trials were also undertaken across the UK using wheat varieties that are known to be susceptible to the disease, with PST-infected wheat samples collected during the 2015-2016 and 2016-2017 seasons. These samples will be genotyped to study the prevalence of different PST races and determine whether PST genotypes identified early in the season are predictive of dominant genotypes found later in the season. Understanding PST dynamics within a field is key to build an epidemiological model that can predict how this disease behaves. This would improve disease management, targeting of chemical sprays and optimize pathogen surveillance.

Tags:

Pages