All BGRI Abstracts

Displaying 21 - 30 of 416 records | 3 of 42 pages

Genome wide association mapping of resistance to leaf rust disease in wheat

BGRI 2018 Poster Abstract
Mohamed Mergoum The University of Georgia (UGA)
Suraj Sapkota, James Buck, Jerry Johnson, John Youmans

Leaf rust disease, caused by the fungal pathogen Puccinia triticina, is a major biotic constraint of wheat production worldwide. Genetic resistance is the most effective, economic, and environmentally safe method to control and reduce losses caused by this disease. More than 70 leaf rust resistance genes have been identified and mapped to specific chromosomes; however, continuous evolution of new leaf rust races requires constant search for new sources of resistance with novel QTL/genes. The objectives of this study were to identify sources of resistance, and to map genomic loci associated with leaf rust resistance using genome wide association study (GWAS) approach. Phenotypic evaluation of 297 spring wheat genotypes against a prevalent race of leaf rust in Georgia revealed that most of the genotypes were susceptible, and only 24 genotypes were found resistant. Furthermore, GWAS detected 10 markers on chromosomes 2A, 2B, 6A, 7A, and 7B significantly associated with leaf rust resistance. A marker on chromosome 7AS was identified revealing a novel genomic region associated with leaf rust resistance. The new identified sources of resistance and QTL could be used in wheat breeding programs to improve leaf rust resistance.


Large scale pre-breeding efforts for broadening gene pool and genetic improvement of wheat

BGRI 2018 Poster Abstract
Sukhwinder Singh CIMMYT
Prashant,Vikram, Deepmala, Sehgal, Juan, Burgueno, Carolina, Sansaloni, Cynthia, Ortiz, Ernesto, Solis, Lulu, Ledesma, Pillar, Suaste, G, Fuentes, J, Ireta, A, Sharma, P, Srivastava, Sridhar, Bhavani, Thomas, Payne, V, Govindan

Wheat breeding programs have successfully harnessed the potential of elite germplasm pool and have contributed significantly to global food security. However, to obtain additional genetic gain, useful diversity for key traits from landraces, synthetics and wild relatives should be incorporated in breeding germplasm pool. Maladaptation and linkage drags are the bottlenecks in utilizing these exotic genepools for pre-breeding. A systematic, focused, large scale effort has been pursued at CIMMYT through a three-way cross (exotic x elite1 x elite2) population development strategy. Population was advanced through selected-bulk scheme in way to select relevant genetic diversity while maintaining large population sizes. A total of 984 advanced pre-breeding lines (PBLs) were evaluated in multiple environments for grain yield related traits, micronutrient content and diseases resistance (yellow rust, stem rust, powdery mildew, and karnal bunt). Potential useful lines for these traits have been identified. High-density genomic characterization of PBLs, parental elites and exotics was conducted through a "haplotype map" based approach, which revealed 16% (58/361) exotic specific haplotype block (HB) introgression in PBLs. Out of 58 exotic specific HBs, 12 (12/361 = 3%) were found associated with traits evaluated in the study. Three HBs, H1.28 (1A), H18.1 (6D) and H5.23 (2B) were significantly important as they showed consistent effects across environments for grain yield (1A and 6D) and yellow rust (2B). This significant contribution of exotics into PBLs opens avenues to mine and utilize their useful alleles in wheat improvement. This research describes systematic large-scale pre-breeding efforts, as proof of concept of exotic germplasm deployment to the breeding pipelines simultaneously enriching genetic knowledge through high-density genomics analysis. Genetic knowledge coupled with breeding efforts should provide substantial gain required for next generation wheat varietal improvement.


An ABA-induced sugar transporter gene TaSTP1 reinforces wheat susceptibility to Puccinia striiformis

BGRI 2018 Poster Abstract
Baoyu Huai State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling
Lijing Pang, Pu Yuan, Shoujun Hu, Jie Liu, Zhensheng Kang

Pathogens, whatever their types, develop at the expense of the nutrients generated by host and it is largely assumed that classical sources turn into sinks when colonized by pathogens. Sugar appears to be the major carbon and energy source transferred from the host to pathogens. Uptake, exchanges and competition for sugar, at biotrophic interfaces, are controlled by membrane transporters and their regulation patterns are essential in determining the outcome of plant-fungal interactions. However, mechanisms of transport and transporters involved in carbon partitioning between organisms are still poorly understood.
In this study, a wheat sugar transporter protein (STP) gene, TaSTP1, was cloned from a wheat-Puccinia striiformis f. sp. tritici (Pst) interaction cDNA library. Transcripts of TaSTP1 were up-regulated in wheat leaves that were infected by Pst or had experienced exogenous ABA and certain abiotic treatments. Heterologous mutant complementation in Saccharomyces cerevisiae revealed that TaSTP1 transports a broad-spectrum monosaccharides including glucose, fructose, mannose and galactose. Transient expression in Nicotiana benthamiana and Arabidopsis protoplasts suggested that TaSTP1 is localized in plasma membrane. Yeast two hybrid and bimolecular fluorescence complementation (BiFC) validated oligomerization of TaSTP1. Knocking down TaSTP1 using the barley stripe mosaic virus-induced gene silencing system reduced the susceptibility of wheat to the Pst virulent pathotype CYR31. Hyphal abnormality was significantly observed in VIGS plants. These results suggest that TaSTP1 may directly or indirectly participate in sugar transport in the wheat-Pst interactions and exert influence on suagr supply of Pst.


Genetic Improvement in Quality, Grain Yield and Yield Associated Traits of Durum wheat (Triticum turgidum var.durum L.) in Ethiopia

BGRI 2018 Poster Abstract
Mekuria Dejene Ethiopian Institute of Agricultural Research

Information about changes associated with advances in crop breeding is essential for understanding yield-limiting factors and developing new strategies for future breeding programmes. Thirty-six durum wheat varieties released since 1966 were evaluated in three replications of the Randomized Complete Design at Debre Zeit and Akaki, Ethiopia during the 2016 cropping season to estimate the amount of genetic gain made over time in grain yield potential, yield-associated traits and in protein content. Analysis of variance revealed significant differences among varieties for all 16 quantitative traits, protein content and protein harvest in Kg ha-1 at each of the locations. Grain yield varied between 1.66t ha-1 for Arendato released in 1966 to 3.90t ha-1 for Megenagna released in 2012 with mean of 2.952t ha-1 at Debre Zeit. At Akaki yield range was between 2.45 and 5.04t ha-1 with mean of 3.992t ha-1. 25 varieties surpassed Arendato (3.754t ha-1) at this location. In the combined ANOVA significant difference between the varieties was observed only for spike length, spikelets spike-1, grains spikelet, grains spike-1, plant height, days to flowering, thousand grain weight and hectoliter weight. Varieties specifically adapted to only one of the locations, widely adapted varieties and varieties not adapted to any of the locations were identified. Regression analysis revealed that grain yield has increased by 22kg ha-1 year-1 since 1966; an increase of 40.6% over yield in 1966. This was accompanied with a significant decline of 11.4% in spike length, 6.7% in spikelets spike-1, 17.9% in protein content and 31.2% in protein yield ha-1 and a significant increase of 41.1% in grains spikelet-1, 32.9% in number of grains spike-1, 22.3% in thousand grain weight, 17.8% in grain filling period, 23.9% in seed growth rate, 40.1% in grain yield production rate, 7.9% in harvest index.


Identification and characterization of winter wheat germplasm resistant to stem rust in Kenya and Turkey

BGRI 2018 Poster Abstract
Beyhan Akin International Maize and Wheat Improvement Center (CIMMYT), P.K. 39 Emek 06511 Ankara, Turkey
Nilufer,Akci, Sridhar, Bhavani, Mesut, Keser, Fatih, Ozdemir, Ruth, Wanyera, Alexey, Morgounov, , , , , , , , , , , , , , , , , ,

A diverse set of winter wheat germplasm was screened for resistance to stem rust in large-scale trials in Kenya and Turkey during 2009-16. The study aimed to select resistant material and characterize types of resistance and possible genes, as well as evaluate agronomic traits and resistance to other diseases to select superior variety candidates and parental lines. The study material was comprised of various Facultative and Winter Wheat Observation Nurseries (FAWWON), which are developed and distributed by the International Winter Wheat Improvement Program ( in Turkey. More than 1600 global accessions were screened, with most evaluated for two years. Based on stem rust data from Kenya, more than 400 genotypes were identified exhibiting adequate levels of resistance to the Ug99 race group. The highest number of resistant lines originated from IWWIP (~170), USA (~100), Russia (~40), Iran (~30), Romania (~20), and South Africa (~20). Material was also tested at two sites in Turkey: Haymana (artificial inoculation) and Kastamonu (natural infection). There was no significant correlation between stem rust severities in Kenya and in Turkey, due to differences in stem rust pathotypes. However, a set of germplasm (more than 100 entries) has been identified as resistant in both countries. This set represents promising material as variety candidates and parental lines; another study is currently identifying the genes controlling the stem rust resistance in this population. IWWIP distributed stem rust resistant germplasm to its global collaborators during 2010-2015, in response to the threat from the Ug99 race group. New resistant germplasm combining broad adaptation, high yields, and resistance to other diseases is available on request.


Race analysis of Puccinia graminis f. sp. tritici led to identification of the new race TTKTK, affecting Sr31 and SrTmp, in Iran

BGRI 2018 Poster Abstract
Ramin Roohparvar Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
Ali Omrani

The basidiomycetous fungus, Puccinia graminis f. sp. tritici (Pgt) causes stem rust disease as one of the most destructive wheat pathogens, worldwide. TTKSK and other Pgt races under Ug99 race group are considered as major threats to wheat production in east Africa and CWANA region by defeating the stem rust resistance gene Sr31, while its ineffectiveness was reported in Iran in 2007. Race TKTTF of Pgt caused a severe stem rust epidemic in southern Ethiopia in 2013, and was spread to Europe through 2016 Sicily outbreak. This research describes race identification of Iranian isolates collected during the widespread distribution of stem rust in 2014-16. Purified urediniospores of 123 Pgt isolates were separately inoculated on seedlings of 20 North American differential wheat cultivars carrying different Sr resistance gene/s. Infection types were recorded at 14 days post inoculation (dpi) using Stakman et al. 0-4 scale. Based on the letter code nomenclature, we identified the Pgt races TKTTF, TTTTF, TTKSK, TTKTK, PKTTF, TKSTF, PKSTF, PKTTC, PTRTF, PTTTF, PKSTC, TTRTF, TKSTC and PKRTF in Iran. TKTTF and TTTTF were determined as prevalent Iranian Pgt races. This is the first report of race TTKTK, a new variant of Ug99 race group with virulence on Sr31 and SrTmp resistance genes, in Iran. Since TTKTK primarily occurred in south west of Iran, the migration route for this new race seems to be similar to race TTKSK. The high race variation observed in this study could indicate a high genetic diversity among P. graminis f. sp. tritici populations in Iran, as a wheat center of origin.


Genetics of yield components for drought tolerant wheat (Triticum aestivum L.) genotypes

BGRI 2018 Poster Abstract
Sharmin Ashraf University of Agriculture, faisalabad
ihsan khaliq

Drought tolerance is a polygenic trait, with a complicated phenotype, often confused by plant phenology. Breeding for water stress is more complex since there are many types of abiotic stresses, such as drought, heat and salt. High yielding wheat genotypes viz., Miraj-06, 9452, 9469, 9272, 9277, CMS-127 and three testers Chakwal-50,
Kohistan-97 and Aas-11 were crossed in line ? tester mating design. Seed obtained from crosses was evaluated in field conditions for various agronomic traits under drought conditions. Recorded data were subjected to analysis of variance to determine the genetic variability. The data were analyzed statistically and combining ability
studies were tested using line ? tester analysis to find the relationship between different traits of wheat. High significant differences were observed among the lines and testers for yield related traits under stress conditions.

The female line 9452 proved to be best line on the basis of mean performance of traits under water stress. In case of testers, the male parent variety Chakwal-50 retained its performance in maximum number of traits closely followed by Aas-11. The cross combination 9272 ? Aas-11 proved best for attaining highest mean for most of
traits. In case of GCA effects line 9277 and tester Aas-11 proved best. The cross combinations 9277 ? Chakwal-50, 9452 ? Kohistan-97 exhibited highest SCA effects. The superior genotypes and crosses can be combined to develop new promising and improved varieties under water stress conditions.


Pathogenic diversity in Puccinia striiformis f. sp. tritici isolates from Pakistan

BGRI 2018 Poster Abstract
Javed Iqbal Mirza Crop Diseases Research Institute, PARC Substation, Murree Pakistan
Sufyan,Muhammad, Abid Majeed, Satti, Munir, Anjum, Fayyaz, Muhammad, Atiq ur Rehman, Rattu, Imtiaz, Muhammad, , , , , , , , , , , , , , , , , ,

225 Puccinia striiformis f.sp. tritici isolates collected from wheat growing areas of Pakistan during 2013-2016 were analyzed using 18 near isogenic yellow rust differentials. Seventy eight races were identified among collection in which 20 were common (n > 2). Rest of the races were very rare and encountered only once (n=1). Races 574212, 574232, 474232, 474233, 574213 and 434232 were most frequent (n> 15). Pathogenic diversity analysis of the collection reveal high diversity (H =3.57) of the P. striiformis population of pakistan. On the basis of phenotypic response to yellow rust genes, the most frequent races could be grouped into 5 diverse groups. Distinct grouping was also observed in rarely encountered isolates. Most of the races were highly complex and 80% isolates had complexity ranging from 8 to 11. Virulence frequency for Yr6, Yr7, Yr8, Yr17, Yr27, Yr43 & YrExp2 remained above 80% while that of Yr1, Yr9 and Yr44 remained over 40%. Partial virulence was detected for Yr5, while virulence to Yr10, Yr15, YrSP was found in < 4% isolates. Paper discuss spatial and temporal distribution of P. striiformis races in Pakistan.


A new stem rust resistance locus detected in wheat variety Yalta

BGRI 2018 Poster Abstract
Davinder Singh University of Sydney
Robert,Park, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

To monitor evolution and pathogenic variability of wheat stem rust pathogen (Puccina graminis f. sp. tritici) in Australia, the Australian Cereal Rust Control program regularly conducts national annual surveys. Recently, we detected a new pathotype 34-1,2,5,7 (culture # 661) virulent on stem rust resistance genes Sr5, Sr6, Sr7b, Sr9g, Sr11, Sr15 and Sr17. Although virulent on Sr11, this pathotype produced a low infection type (IT 22+C/X) on the Sr11-differential genotype Yalta, indicating that Yalta carries an uncharacterised resistance (SrY) in addition to Sr11. To characterize SrY, we screened a RIL population Yalta/W2691 (104 lines) with two pathotypes: 21-0 (avirulent on Sr11 or AA) and the newly identified 34-1,2,5,7 (virulent on Sr11 but avirulent on SrY or BB). Yalta produced low infection types, "1C" and "22+C/X" with pathotypes 21-0 and 34-1,2,5,7, respectively, whereas W2691 was susceptible to both pathotypes. The population segregated for AA/aa (35 Res: 69 Sus) and BB/bb (36 Res: 68 Sus) loci with pathotypes 21-0 and 34-1,2,5,7, respectively. The observed segregation (AA/aa and BB/bb) however failed to fit with predicted single gene 1:1 model (P<0.05) with both pathotypes. Joint segregation analysis (AA/aa vs BB/bb) also significantly deviated (P<0.01) from 1:1:1:1 (AABB:AAbb:aaBB:aabb) genetic model. It appears that population is skewed towards susceptibility in each case either by chance or differential gametic transmission as reported previously in progenies derived from crosses involving variety Yalta. The segregation pattern (AABB and aabb) with two pathotypes was, however, highly coupled apart from 13 lines, of which, 6 lines (AAbb) were susceptible with 21-0 and resistant with 34-1,2,5,7, and 7 lines (aaBB) resistant with 21-0 and susceptible with 34-1,2,5,7, showing that the two loci are linked (?2 linkage = 76.9; P<0.001) and located very close to each other. If that is the case, it may imply that SrY is common in wheats carrying Sr11. Cultivar Charter has been used in India to differentiate pathotypes virulent for Sr11, suggesting that Charter also carries a second stem rust locus (SrC) possibly corresponding with SrY. Further studies and mapping work are underway to determine the genetic relationship between SrY, SrC and Sr11.


Virulence to Yr10 and Yr24 in Mexican yellow rust fungal population and implications for CIMMYT durum and bread wheat germplasm

BGRI 2018 Poster Abstract
Julio Huerta-Espino INIFAP, Mexico
Ravi Singh, Karim Ammar

Stripe rust, caused by Puccinia striiformis tritici (Pst), continues its evolution towards virulence to race-specific resistance genes. Identification of Mexican Pst isolates MEX16-03 and MEX16.04 that changed infection types of Yr10 testers from 1 to 9 and for Yr24 (=Yr26) testers from 3 to 9 indicated that a mutation for virulence to these resistance genes has occurred in a predominant race detected in 2014 and maintained at CIMMYT as MEX14.191 and at INIFAP as CMEX14.25. Isolate MEX14.191 was responsible for the susceptibility of popular varieties Nana F2007 and Luminaria F2014 grown in central Mexican highlands. Isolate MEX16.04 has the following avirulence/virulence formula: Yr1, 5, 15, SP/Yr2, 3, 6, 7, 8, 9, 10, (17), 24, 26, 27, 28, 31, 32 using the Avocet near-isolines and other known testers. Virulence to Yr10 and Yr24 (=Yr26) were also confirmed by testing seedlings of cultivars Moro (Yr10), Chuanmai 42, and Neimai 836 (Yr24). Seedling tests carried on 200 bread wheat, 550 durum, and 460 synthetic hexaploid wheats with their respective durum parents from CIMMYT collection indicated that MEX16.03 and MEX16.04 do not represent a major threat because a majority of the lines remained resistant to these isolates. However, it is worth mentioning that durum cultivars, such as Khofa, Desert King, Anatoly, Movas, and Llareta INIA, and 10 primary synthetic hexaploid or synthetic-derived bread wheats that were resistant to MEX14.191 became susceptible to MEX16.03 and MEX16.04. Our results indicate that resistance gene Yr10 was absent and Yr24 occurred in low frequency in CIMMYT bread wheat germplasm. A majority of CIMMYT durum wheat possibly carried Yr24 in combination with other effective gene(s).