All BGRI Abstracts

Displaying 1 - 10 of 220 records | 1 of 22 pages

Adult plant stem rust resistance of selected Egyptian and exotic bread wheat varieties

BGRI 2018 Poster Abstract
Mohamed Hasan Plant Pathology Research Institute
Atef Shahin, Mohamed Abu Zaid

Resistance genes Sr2, Sr22, Sr24, Sr25 and Sr26 confer adult plant resistance to Pgt race TTKSK (=Ug99). Ten Egyptian wheat varieties and four bread wheat entries from CIMMYT were screened with five DNA markers to determine the presence of these genes, and were evaluated for stem rust response at Sakha and Sids during the successive growing seasons of 2015/16 and 2016/17. Varieties Giza 171, Sakha 94, Gemmeiza 11, and CIMMYT lines 6043, 6091, 6107 and 6197 were resistant with severities ranging from TrR to 5MR/MS. Sr2 was present in all entries; Sr24 was present in one local Egyptian cultivar (Misr2); Sr25 was present in Misr 1, Misr 2, Gemmeiza 9, Gemmeiza 11, and lines 6091 and 6197; and Sr26 was present in line 6197.

Tags:

Occurrence of wheat rusts in Algeria and strategies to reduce crop losses

BGRI 2018 Poster Abstract
Amira Bentounsi University Mentouri of Constantine, Algeria

Wheat is the world's most widely grown food crop. New races of pathogens frequently overcome current resistant varieties. To address this issue Algeria has strategies for immediate action, medium term protection and long-term research efforts to develop new resistant wheat varieties. Yellow rust is a very important disease of wheat in Algeria where 60% of the wheat crop is grown under cooler high elevation climate conditions (2?C ? 15?C). Crop losses reached 80% during the 2004/2005 epidemics. Strategies adopted to reduce the risk of wheat rust are ongoing yearly surveillance, awareness, and early warning systems to farmers; and breeding and developing new varieties with high yield potential and durable resistance. Several highly resistant varieties (Tiddis, Boumerzoug, Massine, Akhamokh and Yacine) were selected and promoted following seed multiplication and commercial release. They are also widely used in crosses to improve local varieties. The newly released varieties are being distributed to farmers that grow susceptible varieties. This gene deployment will provide a natural barrier between eastern to western Algeria to intercept the major direction of air flow. Fungicide control is now routinely applied soon after rust detection or even preemptively. The level of awareness for wheat rusts across Algeria is now very high. Training among farmers for visual detection is widely promoted by plant protection and extension services. These strategies have been very effective in mitigating the threat of wheat stripe rust such that losses have not exceeded 10% over the last five years.

Tags:

Durable and High Level Stripe Rust Resistance in Wheat Cultivar Madsen Conferred by Five QTL for All-stage or HTAP Resistance

BGRI 2018 Poster Abstract
Xianming Chen USDA-ARS, Pullman, WA, USA
Lu Liu, Meinan Wang, Junyan Feng, Deven See, Shiaoman Chao

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is the most destructive disease of wheat in the US Pacific Northwest. Durable high-temperature adult-plant (HTAP) resistance to stripe rust has been emphasized for breeding wheat cultivars and the resistance level has been gradually increased since the early 1960s. Wheat cultivar Madsen has been widely grown, intensively used in breeding programs, and has exhibited durable and high level resistance to stripe rust since its release in 1988. To map its resistance genes and determine the genetic basis of durable and high-level of resistance, Madsen was crossed with susceptible cultivar Avocet S, and 156 recombinant inbred lines (RILs) were developed. The RILs and parents were tested with races PSTv-37 and PSTv-40 in seedling stage at low temperatures in the greenhouse and in adult-plant stage in the fields of Pullman and Mount Vernon, WA in 2015 and 2016 under natural infection of the pathogen. The RILs were genotyped with single-nucleotide polymorphism (SNP) markers derived from genotyping by sequencing and the 90K Illumina iSelect wheat SNP chip. A linkage map was constructed with 1,348 SNP loci. QTL analysis identified three genes for all-stage resistance on chromosomes 1AS (QYrMad.wgp-1AS), 1BS (QYrMad.wgp-1BS), and 2AS (QYrMad.wgp-2AS); and two QTL for HTAP resistance on 3B (QYrMad.wgp-3B) and 6B (QYrMad.wgp-6B). QYrMad.wgp-2AS was the most significant QTL, explaining 16.03-71.23% phenotypic variation depending upon the race or environment, followed by QYrMad.wgp-6B that was consistently detected in all field experiments and explained 6.7-35.9% of the phenotypic variations. Based on the chromosomal locations and the results from other studies, QYrMad.wgp-2AS contains Yr17 and a HTAP resistance QTL, and QYrMad.wgp-1AS is a new QTL. The interactions among these QTL were mostly additive. The combination of the five QTL for different types of resistance provides the durable and high level resistance to stripe rust.

Tags:

Yield loss due to stem rust in wheat varieties with different types of resistance

BGRI 2018 Poster Abstract
Tegwe Soko University of the Free State and Seed-Co
Vicky Coetzee, Cornelia M. Bender, Renée Prins, Zacharias A. Pretorius

Notwithstanding the re-emergence and importance of wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt), the degree of protection provided by different types of resistance has not been carefully investigated in contemporary studies. Seven wheat entries were exposed to stem rust infection and fungicide response in a split-plot field experiment over two seasons. Severe epidemics of Pgt race PTKST, generated by frequent inoculation of spreader rows within and around the trial, developed in both years. By comparing grain yield in rusted and fungicide sprayed plots, varieties SC Nduna (Sr31) and SC Stallion (Sr2+Sr31) sustained mean yield losses of 28.8% and 20.7%, respectively. From entries with adult plant resistance (APR), Kingbird recorded a loss of 10.1% as compared to W1406 (19.5%) and W6979 (15.4%). Grain yield of SC Sky which exhibits all stage resistance (ASR) was reduced by 6.4% over the two seasons. The highest yield loss (47.9%) was measured for Line 37, the susceptible control. A significant linear relationship occurred between percentage yield loss and AUDPC in both seasons (R2=0.99 and 0.83). This study showed that not all sources of APR to stem rust provided the same level of protection under severe disease pressure. In the absence of virulence for SC Sky, ASR conferred the most protection.

Tags:

Virulence diversity of wheat stem rust (Puccinia graminis f.sp. tritici) in Ethiopia in 2016 main cropping season

BGRI 2018 Poster Abstract
Endale Hailu Abera Ethiopian institute of agricultural research
Dr. Netsanet B. Heyi, Dr. Getaneh W. Wolderufael, Tsegab T.

Stem rust caused by Puccinia graminis f. sp. tritici (Pgt) is a major production constraint in most wheat growing areas of Ethiopia. The stem rust pathogen is capable of rapidly developing new virulence to resistance genes. The highlands of Ethiopia are considered a hot spot for Pgt diversity. The present study was conducted to investigate the virulence diversity and spatial distribution of races of Pgt in the major wheat growing areas of Ethiopia. The physiologic races of Pgt were determined on seedlings of the standard wheat stem rust differentials following the international system of nomenclature. Stem rust race analyses were carried out both at Ambo Plant Protection Center and the Cereal Disease Laboratory in Minnesota. 426 stem rust samples were collected from major wheat growing of the country in the 2016 cropping season and 185 viable samples were analyzed. Stem rust races TKTTF, TTKSK, TTTTF, JRCQC and RRTTF were identified. Among the identified races, TKTTTF was dominant at a frequency of 78.7% followed by TTKSK (10.6%). Race TTTTF was found for the first time in Ethiopia in 2016. Only one resistance gene in the differential set, Sr24, was effective against all isolates. Stem rust resistance gene Sr31 was found to confer resistance to most of the races prevalent in Ethiopia with the exception of Ug99. Sr24 could be used in combination with other resistance genes in breeding for resistance to stem rust in Ethiopia.

Tags:

Impact of extension activities on the adoption of new wheat varieties

BGRI 2018 Poster Abstract
Joel Ransom North Dakota State University
Andrew Friskop

The rapid adoption of new varieties of wheat with disease resistance is critical to mitigating losses due to new diseases or disease races, even when only part of an integrated disease management program may include fungicides. There are numerous sources of information that can be used by farmers in North Dakota when selecting varieties with specific disease resistance as well as other traits. Formal surveys were conducted to determine the role of extension activities on the adoption of Fusarium Head Blight (FHB) control practices especially on the use of new varieties with FHB resistance. This disease became a regular and devastating problem of small grains in eastern North Dakotas in the 1990s. In a survey specific to North Dakota conducted in 2010, most respondents indicated that information from the extension service was their main source of information for FHB control with varietal selection their primary means of control. Extension publications, accessed through the internet or as hard copy obtained from an extension office or at an extension meeting were the most important sources; fewer respondents obtain their information from extension meetings and field days. A survey conducted in 2014 found that private sources (consultants and input suppliers) are becoming more important sources of information for FHB control and varietal selection, perhaps because the disease has become better understood and most new varieties have some level of FHB resistance. In durum wheat, where there are few varieties available from the private sector, extension publications were found to be the main source of information used for selecting new varieties. Data from these surveys show the importance of a strong and active extension program in ensuring that new varieties with resistance to new diseases/disease races are readily adopted.

Tags:

Heat stress mediated changes in morpho-physiological and quality parameters of wheat

BGRI 2018 Poster Abstract
Mehvish Makhdoom Wheat Research Institute, Ayub Agricultural Research Institute,Faisalabad,Pakistan
Javed Ahmad, Ghulam Mehboob Subhani, Makhdoom Hussain

Crops vary greatly in their tolerance to heat stress. Among the major staples wheat is considered the most sensitive. Wheat production is severely threatened in many countries by heat stress especially during reproductive and grain-filling stages. For recent decades due to change in global climate, the qualitative and quantitative yield of wheat is affected. To meet the demand of food requirements of ever increasing population there is a need to develop varieties which can tolerate heat stress for which screening of germplasm is pre requisite. In the present study, 30 genotypes were used to check their response to heat stress using randomized complete block design following two different sowing dates. Analysis of variance and multivariate analysis were used for finding important traits and best genotypes in relation to heat stress. High broad sense heritability coupled with high genetic advance was measured for gluten and zeleny indicating the presence of additive gene effect for these traits. Principal component analysis showed that under heat stress conditions genotype 11, 14, 15, 20 and 30 performed well. These genotypes were also found resistant to yellow and brown rust and can be used in further breeding programs for development of heat tolerant, rust resistant genotypes.

Tags:

Characterisation of putative pleiotropic wheat leaf rust resistance gene Lr13

BGRI 2018 Poster Abstract
Timothy Hewitt CSIRO
Jianping Zhang, Peng Zhang, Robert Park, Narayana Upadhyaya, Robert McIntosh, Sambasivam Periyannan, Brande Wulff, Burkhard Steuernagel, Evans Lagudah

Evolution of rust pathogens continues to pose challenges to global wheat production. Major resistance (R) genes, which encode proteins of the NBS-LRR (Nucleotide-binding site, leucine-rich repeat) family, have been a valuable resource for breeders to minimise yield losses from infection. Many wheat varieties harbor numerous R genes that could be identified and cloned in order to engineer more sustainable disease control. The advent of targeted gene enrichment and next-generation sequencing (NGS) has allowed rapid cloning of specific R genes, thus enhancing efforts to pyramid these genes and investigate their underlying resistance mechanisms. Several R genes present different phenotypes in certain genetic backgrounds, and cloning them would be an important step towards uncovering their interactions. Hybrid necrosis is one such phenotype observed in crosses of wheat genotypes involving the R gene Lr13 and complementary genes, Ne1 and Ne2, occurring in different allelic forms. It was recently concluded that Lr13 and an allele of Ne2 are actually the same gene based on genetic and mutational studies. The capability of Lr13 to confer both leaf rust resistance and hybrid necrosis cannot be answered without first cloning it. The lack of tightly linked markers coupled with the proximal 2BS chromosomal location of Lr13 does not make it easily amenable to map-based cloning. The NGS-based pipeline MutRenSeq (mutagenesis and R-gene enrichment sequencing) was used on EMS (Ethyl methanesulfonate) induced, susceptible Lr13 mutants along with support from comparative genomics to ascertain candidate gene sequences for Lr13, which are at advanced stages of screening and confirmation. Definite proof that a single gene is involved will only come with transformation studies when the cloned Lr13 candidate transformed into a susceptible line confers both a resistance phenotype in the transgenic line and a necrotic phenotype in the offspring of crosses between the transgenic line and a line possessing Ne1.

Tags:

Emerging private sector involvement in wheat seed research and production in India

BGRI 2018 Poster Abstract
Venugopal Chintada Sathguru Management Consultants
Kanan,Vijayaraghavan, Vijay, Paranjape, Richa, Kapur, Vignesh, Vilayanur Jayaraman, , , , , , , , , , , , , , , , , , , , , ,

Wheat is one of the most important food crops of the world. India is the second largest producer of wheat, currently producing 95 million tons from about 30 million hectares. Looking ahead to 2050, India needs to constantly increase production to about 150 million tons, to meet the rising population and demand. With area under cultivation having no room for growth, productivity will be the main pillar for growing production. Currently India?s yield of 3.1 t/ha has plenty room for growth as compared to the world leaders such as France (7.5 t/ha), Germany (7.3 t/ha) and UK (6.6 t/ha). Wheat productivity depends on multiple factors, seed being one of the most important.
The current operating environment is characterized by wheat R&D in the country conducted by public institutes, but there are clear signs of an emerging private sector involvement. The government promoting Inter-institutional linkages by way of associating private players in research and seed production.
This study evaluates and reflects on the current situation of the wheat seed sector in India - from research, variety/hybrid development, seed production, indent to distribution, the players involved, the challenges therein, upcoming technologies and the way forward.

Tags:

Resistance to tan spot in Tunisian wheat landraces

BGRI 2018 Poster Abstract
Mejda Cherif National Agronomic Institute of Tunisia
Sana Kamel, Elhem, Elfahem, Wissal Feriani, Hanen Sbei

In order to identify sources of resistance to tan spot caused by Pyrenophora tritici-repentis, 359 local wheat accessions were evaluated for reaction to the Oued-Mliz isolate in controlled conditions and in the field. Two and three assessments were carried out at the seedling and adult stages, respectively. There was a highly significant accession effect and 4.2% of accessions were highly resistant in both controlled conditions and the field. Assessments at the seedling stage were positively correlated with each other, and assessments in the adult stage were also positively correlated. However, assessments at the seedling stage were negatively correlated with those at the adult stage. One hundred and fifty five accessions with known origins (from 15 localities belonging to four districts) were projected on a graph defined by the two axes: reactions at the seedling stage and reactions at the adult stage. After placing the average reactions at the seedling and adult stages on the graph, four groups of accessions were obtained: accessions that were resistant to both stages, accessions that were resistant at the adult stage only, accessions that were resistant at the seedling stage only, and accessions that were susceptible at both stages. All four groups were found in each district. However, considering localities, reactions of accessions were highly variable. For example, accessions originating from Menzel Hbib were genetically variable and were represented in each of the four groups, whereas accessions from Sidi El Hani were all resistant at both stages. Further work is needed to study the genetic variability within and between localities and to better understand the resistant accessions.

Tags:

Pages