All BGRI Abstracts

Displaying 1 - 10 of 415 records | 1 of 42 pages

Single/multi trait genome-wide association and SNP effect estimation revealed complex architecture of rust resistance in 2300 wheat accessions

BGRI 2018 Poster Abstract
Reem Joukhadar La Trobe University
Antony Gendall, Hans Daetwyler, Matthew Hayden

Wheat stem (Sr), leaf (Lr) and stripe (Yr) rust pathogens are among the most destructive fungal diseases threatening global wheat production. We utilized 2300 wheat accession including worldwide landraces, cultivars, breeding materials and 341 synthetic accessions backcrossed with three widely grown Australian cultivars (Annuello, Yitpi and Correll) to investigate rust resistance under wide environmental conditions. The germplasm was genotyped with 90K SNP chip, and was phenotyped for two seasons in three different environments against Sr and Lr and in four different environments against Yr. Different environments for each trait showed significant correlation with mean r values of 0.53, 0.23 and 0.66 for Lr, Sr and Yr; respectively. Single-trait genome wide association (GWAS) revealed several environment-specific QTL and multi-environmental QTL distributed on all chromosomes except 6D. Multi-trait GWAS confirmed a cluster of Yr QTL on chromosome 3B (within 8.3 cM) as well as a QTL for Sr and Lr on chromosome 3D. Linkage disequilibrium and comparative mapping showed that at least three Yr QTL exists within the 3B cluster including the durable rust resistance gene Sr2/Yr30. The same region was effective against Sr resistance but did not pass the stringent significant threshold in two environments. The 3D QTL was found mainly in the synthetic germplasm with Annuello background which is known to carry the Ag. elongatum 3D translocation carrying Sr24/Lr24 resistance gene. Interestingly, estimating the SNP effect using BayesR method showed that the correlation among the highest 5% QTL effects across environments were lower than that for the small effect QTL with differences in r values of 0.25 and 0.2 for Lr and Yr respectively. These results indicate the importance of small effect QTL that cannot be captured using GWAS in achieving durable rust resistance. The detected QTL in this study are useful resources for improving bread wheat resistance to rust diseases.

Tags:

Genetic variability and association mapping of anther extrusion in spring bread wheat

BGRI 2018 Poster Abstract
Samira El Hanafi International Center for Agricultrural Research in Dry Areas
Wuletaw,Tadesse, Najib, Bendaou, , , , , , , , , , , , , , , , , , , , , , , , , ,

Hybrid wheat is a promising technology to increase yields worldwide. High seed production costs and low heterosis are the main constraints for the development of hybrid wheats. Maximizing heterosis, and selection and utilization of appropriate morphological, floral and flowering traits to optimize outcrossing are important for hybrid seed production. For an efficient hybrid wheat seed production, high anther extrusion is required to promote cross fertilization and to ensure a high level of pollen availability. A pool of 200 elite spring bread wheat male parental lines was visually assessed for anther extrusion in the plastic-house and field environments. Genome-wide association studies (GWAS) for anther extrusion was carried out using a total of 12725 SNP markers. A wide genotypic variance was observed. Several significant (|log10(P)| > 3.0) marker trait associations (MTAs) were detected. Both genotypes and environment influenced the magnitude of the anther of extrusion. The consistently significant markers could be helpful to introduce anther extrusion trait in high yielding varieties and consequently improve hybrid-seed production in wheat.

Tags:

Reaction of Bhutanese wheat cultivars and differential lines to rust diseases at mid and low altitudes in Bhutan

BGRI 2018 Poster Abstract
Sangay Chophel National Plant Protection Center
Namgay Om, Thinlay, Ugyen Yangchen

Wheat rusts are one of the important diseases that limit the production and downgrade wheat quality. Three rust diseases of wheat are stem rust caused by Puccinia graminis Pers. f. sp. tritici Eriks., stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Eriks., and leaf rust caused by Puccinia triticina Eriks. This study was conducted to determine the reaction of wheat varieties to wheat rusts at different altitudes. Field experiments were conducted from December 2016 to March 2017 at Mendagang (27.5886°N, 89.8711°E, 1332 masl), Punakha Dzongkhag (district) for mid altitude and at Agriculture Research and Development Center (ARDC), Samtenling (26.9058°N, 90.4308°E, 378 masl), Sarpang Dzongkhag, Bhutan for low altitude. The experiment followed a RCBD with 15 treatments comprising of three Bhutanese released varieties, eight SAARC varieties, and four ICARDA varieties. Each treatment was replicated three times. Assessment of disease incidence and severity were performed three times starting from tillering to ripening stage, approximately at 60, 90 and 120 days after sowing (DAS). Disease severity was determined following the modified Cobb’s disease rating scale. Of the 15 varieties, only 11 germinated in both the sites. Among the three wheat rust diseases, only leaf rust was observed in both sites. Leaf rust incidences ranged from 2.5 to 10% and 2.5 to 16% at mid and low altitudes respectively. Disease severity of 5 to 20%, corresponding to field response of immune (5O) to moderately resistant (20MR), was observed at mid altitude, while 5 to 100%, with immune (5O) to susceptible (100S), was observed at low altitude. There was a significant difference in disease incidence by site (p=.038) but not in disease severity (p=.129). The variety, ICARDA 1, with 100% severity was highly susceptible (100S) to leaf rust at low altitude while Bajosokha Kaa remained immune (5O) in both the sites. The results indicate that leaf rust can occur in both low and mid altitudes; however selection of suitable varieties requires more extensive studies.

Tags:

Identification of resistance wheat cultivars using molecular marker against yellow rust in Azerbaijan

BGRI 2018 Poster Abstract
Konul Aslanova Research Institute of Crop Husbandry, Azerbaijan
,, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

A study was conducted between 2014 and 2016 aiming at determining resistance genotypes of 51 local wheat cultivars in Azerbaijan. The cultivars were evaluated in five different agro-ecological zone including Absheron and Tar-Tar (Irrigated area), Qobustan (dry semi subtropical area),Sheki (rain fed area), and Jalilabad (dry area) against three of the rust pathogens under natural conditions with four repetitions at each region. Field responses under natural infection were recorded according to Modified Cobb's scale for major field responses (Restance (R), Moderelt Resistance MR), Moderet Sesusptable (MS), and Sussciptabe (S) and diseases severity (0-100%). For molecular analysis, genomic DNA was extracted from leaves and the following six markers (Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, and Yr26) were used to identify resistance genes at Plant Genomics College of Agronomy Northwest A&F University China. Marker analysis revealed that Yr5 was present at least in 12 cultivars including Murov, Murov-2, Shafag, Shafaq-2, Nurlu-99,Fatima, Azamatli-95,Agali, Gunashli, Saba Giymatli 2/17, P?rzivan-1, Tale-38. In addition, Yr9 was present in seven culitivars (Pirshahin-1, Layagatli-80, Shafag-2, Zirva-85,Fatima, Agali, Gunashli). Yr10 was present in eight cultivars (Yegana, Garagilchig-2, Yagut, Pirshahin, Shirvan-5, Barakatli-95, Bayaz, Girmizi bugda). And Yr18 was present in Mirbashir-128, Azamatli-95, Gunashli, Akinchi-84, Shirvan-3 cultivars. Yr26 worked well but was not found in any of cultivars. Yr17,Yr15 did not work very well with this method.

Tags:

Genetic analysis and location of resistance genes to wheat stripe rust in Chinese landrace Sifangmai

BGRI 2018 Poster Abstract
Jianlu Sun Institute of Plant Protection, Chinese Academy of Agricultural Sciences
Jing Feng, Ruiming Lin, Fengtao Wang, Qiang Yao, Qingyun Guo, Shichang Xu

Wheat stripe rust is an important air borne disease caused by Puccinia striiformis f. sp. tritici, and seriously threatens the safety of wheat production. Breeding and utilization of resistant varieties is the most economical, safe and effective measure to control wheat stripe rust. Sifangmai is a landrace from the state of Guangxi, China, and maintains good resistance to the current epidemic species CYR34, CYR33, CYR32 and CYR29 in China. Sifangmai was crossed with Taichung 29 to obtain F1, F2 and F2:3 to analyze its character of inheritance. In the adult stage, the cross of Sifangmai /Taichung 29 was inoculated by CYR32. The genetic analysis showed that the resistance of Sifangmai to CYR32 was controlled by a dominant gene, named as YrSF. A mapping population of F2 was genotyped with simple sequence repeat (SSR) markers. SSR loci Xgpw8015, Xgpw4098, Xwmc73, Xgpw8092, Xgpw7309 and Xbarc89 on 5B chromosome showed polymorphic between Taichung 29, Sifangmai, and resistant and susceptible pools, indicating that the resistant gene in Sifangmai was located on the 5B chromosome. The linkage map of these SSR markers was constructed and the nearest SSR to the gene is Xgpw8015. A set of Chinese Spring nulli-tetrasomic lines was used to confirm YrSF on chromosome 5B. YrSF is different from known genes in chromosome 5B. Xgpw8015 can be used as a marker for detection of YrSF.

Tags:

Assessment of wheat varieties and Aegilops species on yellow rust resistance in Tajikistan

BGRI 2018 Poster Abstract
Firuza Nasyrova IBPPG TAS
Anvar,Jalilov, Zubaida, Kavrakova, Menu, Mamadyusufova, Botirov, Muhiddin, , , , , , , , , , , , , , , , , , , , , ,

The wild relatives of wheat, the genus Aegilops is of great interest for breeding. Many species of the genus Aegilops are distinguished by such valuable properties as resistance to rust diseases, drought resistance, and salt tolerance.
The evaluation of local wheat varieties on resistance to yellow rust showed that local varieties showed high resistance to the pathogen and were amazed from 0 to 10 %. Evaluation of Aegilops species for resistance to yellow and brown rust, showed that the species Aegilops triunciales showed high resistance to yellow and brown rust, except Ae. triunciales, collected in the Rudaki district and showed moderate resistance to brown rust - 20%. The view of the Aegilops cylindrical collected in the Rudakinsky district showed a moderate resistance to yellow rust and a high resistance to brown rust. View Aegilops tauschii, collected in the Rudakinsky district had a high resistance to yellow and brown rust. Species Aegilops crassa to yellow and brown rust showed a reaction from moderate resistance - 30% to moderate susceptibility - 40%. As a result of the studies to assess the resistance of wheat varieties in Central Tajikistan, the cultivars Jaldak, Safedaki Gorchivin and Viyod, which had high resistance to yellow and brown rust, as well as Pamir and Surkhak varieties, showed moderate resistance.
Distinct varieties of wheat with high and moderate resistance to the pathogen of yellow rust can be used as parental forms for breeding new varieties of wheat. Studies on assessing the resistance of Aegilops species have shown that the species Aegilops triunciales has a high resistance to the pathogen of yellow rust. Species of Aegilops tauschii and Aegilops crassa, collected from the Hissar salt source, had moderate resistance to the pathogen. These species of Aegilops can be used in the selection of new varieties of wheat.

Tags:

Breeding for climate smart bread wheat varieties

BGRI 2018 Poster Abstract
Amna Kanwal Wheat Research Institute, Ayub Agricultural Research Institute,Faisalabad,Pakistan
Mehvish,Makhdoom, Javed, Ahmad, Makhdoom, Hussain, Iqra, Ghafoor, , , , , , , , , , , , , , , , , , , , , ,

Wheat crop is facing immense losses each year owing to climate change, eventually being major threat to global food security. So, the objective of the present study was to screening of advance lines under drought and heat stress conditions. In following study, 30 advance lines of wheat along with four checks(Faislabad-08, Millat-11, Galaxy-13 and ujala16) with three treatments (heat, drought, normal) were tested for different morphological (days to heading, plant height, days to maturity, biomass,1000 grain weight and grain yield) and physiological (canopy temperature at vegetative & reproductive stage, NDVI vegetative & reproductive), parameters. Biplot analysis depicted that V2, V3, V8, V14, V19, V25, and V30 showed the highest OP vector for grain yield in drought environment. Whereas, under heat conditions, V3, V4, V5, V10, V11, and V12 displayed their maximum longest vector for grain yield. Correlation analysis depicted that grain yield had non-significant correlation with canopy temperature (vegetative stage), normalized difference vegetation index (vegetative stage) canopy temperature (reproductive stage), plant height, days to heading and days to maturity under heat stress environment, while it had significant association with biomass and thousand grain weight. Under drought environment, grain yield had positive and significant correlation with biomass while on the other hand it had negative but significant association with normalized difference vegetation index (reproductive stage) and canopy temperature (reproductive stage). Best performing lines could be efficiently exploited in research programs to evade the perilous impact of climate change.

Tags:

Molecular dissection of below and above ground adaptation traits for abiotic tolerance of durum wheat

BGRI 2018 Poster Abstract
Khaoula El Hassouni Mohamed 5th University / ICARDA
Samir Alahmad, Ayed Al-Abdallat, Lee Hickey, Abdelkarim Filali-Maltouf, Bouchra Belkadi, Filippo Maria Bassi

Durum wheat (Triticum durum Desf.) is a major cereal crop grown globally. The terminal reduced moisture and heat occurring at the flowering phase are among the main constraints to its production. The molecular basis of tolerance to these threats remains mostly unknown. A subset of 100 genotypes derived from a collection of 384 accessions originating from different countries were investigated for their root growth and architecture under water-limited and well-watered treatments. Two protocols were used, "clear pot" for seminal root angle and "pasta strainer" for mature root angle evaluation. This study reveals that root architecture did not change depending on water treatment. A genotypic variation in root angle was found and two categories of root types were identified: genotypes with (i) superficial and (ii) deep rooting systems. In order to investigate the impact of each root type on yield, all genotypes were tested in the field at multiple locations and under different water regimes. The same set was also tested for heat tolerance in the field under rainfed conditions. Heat was imposed by placing a polytunnel at flowering time to raise the temperature of 10 degrees. The yield, thousand kernel weight and grain number per spike, were evaluated and compared to assess grain fertility, considered as a key trait of heat tolerance. The complete set was genotyped and a genome scan using 8173 SNPs markers developed by 35K Axiom array allowed to identify the genomic regions influencing drought and heat adaptation mechanisms. The pyramiding of this genomic regions could lead to an improved resilience to climate change and increase durum wheat productivity.

Tags:

Effect of Stem Rust (Puccinia graminis f.sp.tritici) on Quality of Durum Wheat (Triticum tu gidum) in Ethiopia

BGRI 2018 Poster Abstract
Ashenafi Degete Ethiopian Institute of Agricultural Research, Debre Zeit Research Centre
Alemayehu,Chala, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Stem rust caused by Puccinia graminis f.sp. tritici is one of the major biotic constraints of wheat production. The disease may cause substantial quantitative and qualitative yield losses. However, much of the work in Ethiopia on this pathosystem focuses on quantitative yield loss and qualitative losses are often overlooked. Hence the current research was designed with the objectives to evaluate the effect of stem rust on physical and chemical quality of durum wheat and assess the relationships between disease intensity and quality parameters. For this purpose, a factorial field experiment was conducted at Debre Zeit Agricultural Research Centre during main and off seasons of 2016/17. The experiment involved six durum wheat varieties (Denbi, Hitosa, Tob.66, Mukiye, Ude and Mengudo) with different level of resistance to stem rust, and three Tilt spray schedules of Tilt?250 E.C at 7, 14 and 21 days. The experiment was laid out in randomized complete block design in factorial arrangements with three replications and untreated checks were included for comparison purpose. Results revealed significant variations in disease parameters and crop performance among spray schedules, wheat varieties and their interactions. Stem rust severity was the lowest on moderately susceptible and susceptible varieties treated with the Tilt at 7th day schedule. The highest stem rust severity (46.67%) was recorded on variety Hitosa without Tilt spray. Without Tilt treatment Denbi variety accounts protein content of 15.67% which is a false protein. At 7th day spray schedule this variety showed 12.90 % of grain protein content which is normal. There was a significant positive correlation between grain protein and stem rust severity (0.31**). There was significant negative relationships between terminal stem rust severity and thousand kernel weight, hectolitre weight, seed size and yield during off and main seasons were resulted, respectively.

Tags:

In vitro response of durum wheat (Triticum durum Desf.) varieties under drought stress

BGRI 2018 Poster Abstract
Sourour Ayed Research Center of Agricultural and Development in Northwest Semi-arid regions of Tunisia
Afef,OTHMANI, Olfa, SLAMA-AYED, Hajer, SLIM-AMARA, Mongi, BEN YOUNES, , , , , , , , , , , , , , , , , , , , , ,

Eleven durum wheat (Triticum durum Desf.) genotypes were screened to select for drought-tolerance under in vitro immature embryos culture. Drought stress is induced by using five PEG concentrations (0, 200, 270, 295 and 310 g/l of PEG 6000). Results showed, for all studied traits, significant differences among PEG treatments and genotypes. In fact, increasing PEG concentration decreases relative growth rate, callus water content, relative water content, in vitro tolerance and relative tolerance. Biplot analysis indicated that the first two PCs (principal components 1 and 2) explain 70.5 % and showed that Karim, Mahmoudi and Om Rabiaa are respectively the most drought tolerant varieties tested, however, Ben Bechir, Maghrbi and Nasr were the most sensitive.

Tags:

Pages