All BGRI Abstracts

Displaying 1 - 10 of 415 records | 1 of 42 pages

Allelism of resistance genes YrH52, YrG303 and Yr15 originating from different wild emmer sources

BGRI 2018 Poster Abstract
Valentina Klymiuk Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, Israel
Dina Raats, Lin Huang, Valeria Bocharova, Jorge Dubcovsky, Abraham Korol, Tzion Fahima

Wild emmer wheat (Triticum dicoccoides, (DIC)) is an important source of resistance to stripe rust due to presence of Puccinia striiformis in its natural habitats with high humidity and relatively low temperatures that are favorable for stripe rust development. Previously, we showed that DIC accessions from northern Israel were highly resistant to stripe rust. According to the rust responses of three DIC accessions (G25, H52, G303) and mapping of the resistance to relatively close, but different, genetic positions on chromosome 1BS, three different resistance genes were assumed to be present. However, the development of additional critical recombinants and new higher resolution genetic maps for these three genes in subsequent work led us to place YrH52 and YrG303 in the same genetic interval as Yr15, suggesting that the three putative genes are allelic or identical. The recent cloning of Yr15 allowed us to test this hypothesis using an EMS mutagenesis approach. We sequenced the Yr15 locus in five yrH52 and three yrG303 susceptible mutants and identified missense point mutations associated with the susceptible phenotype in each one. Thus, YrH52 and YrG303 may not be new genes. Further work is under way to determine if these genes are allelic or identical.

Tags:

Innovative manufacturing of a cereal rust inoculation device

BGRI 2018 Poster Abstract
Zak Pretorius University of the Free State
Gerrie Booysen, Willem Boshoff, Jozua Joubert

Urediniospores of rust fungi can be applied to cereal plants in several ways. Depending on the objective and available infrastructure, plants can be inoculated with a suspension of spores in either water, light mineral oil (e.g. Soltrol 130®) or engineered fluid (e.g. Novec 7100®). Alternatively, dry spores can be allowed to settle on plant surfaces by dusting or directly applied with a spatula or small brush. Several rust laboratories employ a system where a spore-oil suspension, contained in a gelatin capsule, is sprayed onto seedling leaves by means of a dedicated atomizer connected to an air pressure source. Although this approach is easy to use and highly efficient, the devices are not commercially available in South Africa. Locally, these inoculation appliances need to be manufactured by a conventional milling process that requires a specialized workshop and skilled personnel. This subtractive process is labour intensive and greatly prohibitive in terms of costs. Using a process called Additive Manufacturing (AM), also known as "3D printing", the body of an inoculator was digitally designed and then laser sintered in nylon. Loose powder was removed from flow channels by compressed air. A copper tube fitted afterwards connected the nylon body with the spore suspension in the capsule. Replicated inoculation tests of wheat seedlings with urediniospore bulks or single pustule collections of Puccinia triticina and P. graminis f. sp. tritici resulted in consistent levels of rust severity and infection frequency. Cleaning of inoculators in acetone for 1 min followed by a 1 h heat treatment at 60°C produced no contaminant infection in follow-up tests. The design has been registered in South Africa, the USA and Europe.

Tags:

Characterization and genetic mapping of stem rust resistance in McNair 701 wheat

BGRI 2018 Poster Abstract
Thomas Fetch Agriculture & Agri-Food Canada
Colin Hiebert

Wheat cultivar McNair 701 carries resistance gene SrMcN and is used as a differential line to identify Pgt races using the international letter code nomenclature. The inheritance and location of the resistance gene has not been characterized. We developed a doubled haploid (DH) population from cross LMPG/McNair 701 to study the genetics and chromosomal location of SrMcN. A DH population inoculated with race QCCJB segregated 100 resistant : 94 susceptible, a 1:1 ratio (?2=0.186, P=0.666, NS) indicative of segregation at a single locus. This gene was mapped to chromosome 2DL using the Infinium 90k platform. The map position of SrMcN was similar to that of Sr54, one of two genes previously found in Norin 40. Comparison of stem rust seedling reactions using 12 diverse Pgt races indicated that McNair 701 and an Sr54 line derived from Norin 40 had an identical pattern of responses and similar low infection types (IT=12-) to races LCBNB and QCCJB. Based on the chromosomal location on 2DL and identical seedling responses to Sr54, it is likely that the resistance gene in McNair 701 formerly known as SrMcN is Sr54. This finding will be confirmed by a test of allelism.

Tags:

Study of the effect of planting date on the severity of yellow rust disease on bread wheat in northeastern Syria

BGRI 2018 Poster Abstract
Omran Youssef University of Hohenheim, Germany
Afrem,Issa, Helim, Youssef, Nawzad, Suleiman, Abdul Rahman, Issa, , , , , , , , , , , , , , , , , , , , , ,

Wheat is grown in Syria during the November-December. Wheat is exposed to many strains that negatively affect its productivity especially rust diseases, which was reported on wheat in Syria for many years and the most severe in 2010, Therefore, we studied the effect of planting dates on the severity and development of yellow rust disease. Where the field trials of the 2010-2011 season were carried out at the two locations in northeastern of Syria: Al-Qamishli Research Center and Yanbouh Research Station in Al-Malekia. By cultivating the susceptible bread wheat Cham 8, where six dates were planted starting from 02.10. 2010, a difference of 15 days. The results showed there was a difference in the severity of the yellow rust disease according to the dates of cultivation and thus the stages of growth in the plant and this was evident in the Yanbouh location where the onset of the onset of injury on 08.04.2011 in the all dates and developed the infection to 40S degrees and 30%. Also, on the 24. 04. 2011, the infection was recorded at the Qamishli location only on the third and fourth dates. The disease did not develop more than 10S and 10% due to climatic conditions due to rain and high temperature during the season. The results showed a positive correlation between the evolution of the disease and vegetative growth of plants, where the growth of plants was more active at the site of Yanbouh, especially in the second, third and fourth dates in the development of infection on plants in the rest of the dates because of weak and slow growth of plants.

Tags:

System biology to decipher regulatory network hubs that control Zymoseptoria tritici-wheat infection process

BGRI 2018 Poster Abstract
Sarrah Ben M'Barek Laboratory of Molecular Plant Physiology, Biotechnology Center of Borj Cedria (CBBC)
Mahmoud Gargouri, Hesham A.Y Gibriel, Richard B. Todd, Michael F. Seidl, Gerrit H.J. Kema

Septoria tritici blotch disease, caused by the fungus Zymoseptoria tritici, is a major threat to global wheat production. With the recent advances in high-throughput DNA-based technologies, Z. tritici has become a powerful model system for the discovery of candidate determinants that underlie virulence and host specialization. Although a few important virulence/regulatory genes have been identified, a global understanding of the larger regulatory network has not been developed. Therefore, to uncover the transcriptional regulatory networks of the infection cycle and most particularly the regulatory hubs that control the switch between the biotrophic and necrotrophic phases, we applied an integrated approach combining transcriptomics, proteomics, and metabolomics analyses based on the identification of plant and fungal transcription factors and regulators, which we characterized from the newly annotated genome sequence of the reference isolate IPO323 (Grandaubert et al., 2015) and using datasets from Rudd et al. (2015). Bread wheat transcription factors and regulators were identified by querying the proteome and subsequent categorization from the Plant Transcription Factor database (PTFDB). Similarly, Z. tritici transcription factors and regulators were identified and categorized using the PFAM TF family databases, and following fungal transcription factor rules as outlined by Todd et al. (2014) and rules we developed for fungal transcription regulators. Insights into transcription factors and regulators will enable synthetic biology approaches to alter the Z. tritici-wheat interaction and lead to rewiring of the regulatory networks thereby turning off the fungal infection process. Beyond providing insights into the regulatory systems-levels involved in Z. tritici-wheat interaction, we believe that our dataset and approach sets the stage for an emerging series of studies that will decipher the dynamic regulatory networks in other plant-pathogen interactions.

Tags:

Genomic scan in durum wheat reveals regions controlling adaptation to the heat-prone conditions of the Senegal River

BGRI 2018 Poster Abstract
Amadou Tidiane Sall ICARDA
Filippo,Bassi, Rodomiro, Ortiz, Ibrahima, Ndoye, AbdelKarim, Filali-Maltouf, Bouchra, Belkadi, Miloudi, Nachit, Michel, Baum, Hafssa, Kabbaj, Habibou, Gueye, Madiama, Cisse, , , , , , , , , ,

Wheat is a major food crop in West Africa, but its production is significantly affected by severe heat. Unfortunately, these types of high temperatures are also becoming frequent in other regions where wheat is commonly grown. In an attempt to improve durum wheat tolerance to heat, a collection of 287 elite breeding lines, including several from both ICARDA and CIMMYT, was assessed for response to heat stress in two irrigated sites along the Senegal River: Fanaye, Senegal and Kaedi, Mauritania during 2014-2015, and 2015-2016 winter seasons. The maximum recorded grain yield was 5t ha-1, which was achieved after just 90 days from sowing to harvesting. Phenological traits (heading, maturity and grain filling period) and yield components (1000-kernel weight, spike density and biomass) had also large phenotypic variation and a significant effect on grain yield performance. This panel was genotyped by 35K Axiom to generate 8,173 polymorphic SNPs. Genomic scans identified a total of 34 significant association between single nucleotide polymorphisms (SNPs) and traits across the four environments, including 15 related to phenological adaptation, 12 controlling grain yield components, and seven linked to grain yield per se. The identification of these genomic regions can now be used to design targeted crosses to pyramid heat tolerance quantitative trait loci (QTL), while the SNPs underlying these QTL can be deployed to accelerate selection process facilitated by DNA-aided breeding.

Tags:

Increase in surveillance activities in SAARC region through streamlined efforts and enhanced tool box

BGRI 2018 Poster Abstract
Vijay Paranjape Sathguru Management Consultants
Kanan Vijayaraghavan, Venugopal Chintada, Rituparna Majumder, Richa Kapur, K. Aishwariya Varadan

South Asia has the highest "wheat dependent" low income community in the world. Stem rust and blast are recognized as the most damaging disease of wheat in the region producing 19% of the world's wheat. In order to combat the potential threat the national research centers were geared up to track the real time movement of wheat diseases, generate disease incidence data and create an enabling environment to boost wheat research in the region through streamlined efforts and enhanced SAARC tool box deployed six years ago.
Recent data (2016-17) from the tool box has shown a significant increase in the data records captured in this region compared to previous years. This has been possible because of heightened awareness amongst the scientists and with the continuous capacity building through pre-season and in-season surveillance trainings organized by Sathguru in collaboration with National Wheat Research Institutes at various levels.
The model is helping partner institutes to be self-sufficient for generating, maintaining wheat disease surveillance data in national and global databases and exchanging real time information with stakeholders. The application have been widely deployed and competently being used by 95% of rust surveillance teams in the wheat fields of SAARC region.
The study will focus on how national research center's judicious decision of carrying out diligent surveillance during the season contributed to safeguarding wheat crops in their respective nations through increased vigilance on emergence of new races and targeted introduction of regionally resistant varieties. Further using this data scientist's can aim to strategize their wheat research for identification of resistant varieties and eventually resulting in increased productivity addressing food security of the region.

Tags:

Molecular screening and identification the carriers of effective Yr genes in wheat germplasm of Central Asia

BGRI 2018 Poster Abstract
Alma Kokhmetova Institute of Plant Biology and Biotechnology
Makpal Atishova, Aygul Madenova, Kanat Galymbek, Jenis Keyshilov, Hafiz Muminjanov, Alexey Morgounov

Wheat rust diseases are a major cause of yield losses of this crop. Yellow (Puccinia striiformis f. sp. tritici) rust is of the most widespread and dangerous disease of wheat and is the major factor that adversely affects wheat yield and quality. The use of genetic host resistance is the most effective, economical and environmentally safe method of controlling stripe rust that allows elimination of fungicides and minimize crop losses from this disease. Due to the threat of the development of epiphytoties of rust disease it is necessary to identify new donors of resistance to yellow rust and to develop resistant wheat breeding material. In the present study, attention was drawn to the effective yellow rust resistance genes Yr5, Yr10 and Yr15, which were identified in the process of molecular screening of wheat germplasm. Genetic analysis using S23M41 molecular marker linked to Yr5 revealed the presence of this gene in 17 out of 136 promising lines. Thirteen genotypes screened with Xbarc8 generated the DNA fragment associated with Yr15. Three advanced lines with Yr10 were identified using the SCAR marker. Three lines carrying two Yr genes (Yr5 and Yr15) were detected. Combination of Yr5 and Yr10 were found in 15 wheat lines. We identified a number of wheat genotypes highly resistant to stripe rust, which could be further evaluated to release new resistant varieties or to be used in the breeding program.

Tags:

Introgression of the coupled Sr2/Fhb1 for resistance to stem rust and Fusarium head blight into Uruguayan elite wheat cultivars

BGRI 2018 Poster Abstract
Miguel Raffo Instituto Nacional de Investigaci?n Agropecuaria (INIA)
Clara,Pritsch, Gustavo, Azzimonti, Silvia, Pereyra, Mart?n, Quincke, Victoria, Bonnecarrere, Paula, Silva, Ariel, Castro, Bettina, Lado, Silvina, Bar?ibar, Richard, Garc?a, Silvia, Germ?n, , , , , , , ,

Stem rust (SR) and Fusarium head blight (FHB) threaten the sustainability of wheat production worldwide. Sr2 is a widely used gene conferring partial, but durable, resistance to SR. Fhb1 confers a significant level of FHB resistance, but is poorly represented in the INIA-Uruguay wheat-breeding program. Sr2 and Fhb1 are linked in repulsion (~3 cM apart) on chromosome 3B. However, lines with Sr2 and Fhb1 in coupling were recently developed at the University of Minnesota, USA (kindly provided by J. Anderson). In order to incorporate Sr2/Fhb1 into Uruguayan elite wheat cultivars the donor line was crossed and backcrossed with four cultivars lacking both genes and expressing an intermediate to low level of resistance to SR and FHB: G?nesis 2375, G?nesis 6.87, INIA Madrugador, and INIA Don Alberto. Genotypes carrying Sr2/Fhb1 were selected using molecular marker UMN10; 250 BC2F1 were obtained for each recurrent parent. BC3F1 plants positive for UMN10 will be selected. The effect of Sr2/Fhb1 on response to SR and FHB in the different genetic backgrounds will be quantified by comparing disease severities of BC3F2 homozygotes with and without the UMN10 marker. Hopefully the introduction of Sr2/Fhb1 will contribute in reducing the risk of SR and FHB in wheat crops in Uruguay.

Tags:

Wild grass as a reservoir of Fusarium graminearum and source of inoculum

BGRI 2018 Poster Abstract
Michael Fulcher Cornell University
James Winans, Julian Garcia, Kellie Damann, Gary Bergstrom

In addition to causing Fusarium head blight of wheat and other cereals, Fusarium graminearum is associated with dozens of wild or weedy grass species. Their role in the disease cycle and evolution of the pathogen has not been established despite their widespread distribution. A three-year survey of wild grasses in New York (USA) found that inflorescences and overwintered stems were frequently colonized by F. graminearum. Through a series of controlled laboratory experiments, wheat and five common grass species were compared for their potential to support inoculum production. Artificially infested stem tissue from several grasses both retained F. graminearum at higher rates through a single winter and supported greater ascospore production per dry gram than wheat. Susceptibility of these species to root and crown rot was measured with a modified seed germination assay and a diverse panel of F. graminearum isolates. Differences were seen between host species, and some grasses were resistant to infection. Our results indicate that wild grass species may support significant F. graminearum inoculum production while differing in their suitability for root and crown colonization. Studying interactions between F. graminearum and alternative host plants can improve our understanding of evolution in a broad host range pathogen and our ability to predict the risk of crop epidemics. We are currently evaluating isolates collected from wild grasses for mycotoxin production and aggressiveness on wheat.

Tags:

Pages