All BGRI Abstracts

Displaying 1 - 10 of 415 records | 1 of 42 pages

Mapping of all-stage leaf rust resistance genes in Triticum dicoccoides derived recombinant inbred line (RIL)

BGRI 2018 Poster Abstract
Ahmed Elkot School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana-141004 India
Rohtas,Singh, Satinder, Kaur, Parveen, Chhuneja, , , , , , , , , , , , , , , , , , , , , , , ,

Leaf rust caused by Puccinia triticina is one of the most historical and economically important wheat diseases. Breeding for new cultivars with effective gene combinations is the most promising approach for reducing losses due to leaf rust. Wild emmer wheat, Triticum dicoccoides, the progenitor of modern tetraploid and hexaploid wheats, is an important resource for new variability for disease resistance genes. An accession of T. dicoccoides acc. pau4656 showed resistance against prevailing leaf rust races in India, when tested at the seedling and adult plant stage. The introgression line, developed from the cross of the leaf rust resistant T. dicoccoides acc. pau4656 and the susceptible T. durum cultivar Bijaga yellow, was crossed with T. durum cultivar PBW114 to generate recombinant inbred lines (RIL) for mapping leaf rust resistance gene(s). RIL population was screened against highly virulent leaf rust race 77-5 at seedling stage and inheritance analyses revealed the segregation of two leaf rust resistance genes. The genes have been temporarily designated as LrD1 and LrD2. A set of 387 SSR marker was used for bulked segregant analysis (BSA). The markers showing diagnostic polymorphism in the resistant and susceptible bulks were amplified on whole of the population. Single marker analysis using MapDisto software placed LrD1 on the long arm of chromosome 6A linked to the SSR marker Xwmc256 and LrD2 on long arm of chromosome 2A close to the SSR marker Xwmc632. T. durum cv. PBW114 used in the present study was also resistant to leaf rust at the seedling stage. So one of these leaf rust resistance genes might have been contributed by the PBW114 and other by T. dicoccoides. The current study identified valuable leaf rust resistance genes for deployment in wheat breeding programme.

Tags:

Genomic selection and genome scan to identify valuable durum wheat germplasm for abiotic stress

BGRI 2018 Poster Abstract
hafssa kabbaj Mohamed 5 university/ICARDA
Amadou tidiane sall, meryem zaim, Ayed Al-abdallat, Gregor Gorjanc, Jesse Poland, Miloudi Nachit, Abdel karim Filali Maltouf, Bouchra Belkadi, Rodomiro Ortiz, Filippo Bassi

Durum wheat production is globally important, but grain yield has been stagnating in recent decades. In order to ensure that its production maintains the pace with increasing demand, breeding for high grain yield must be supported by molecular-based methods. Genomic estimated breeding values for selection and genome scan were assessed as molecular tools holding maximum potential for durum wheat breeding. Four recombinant inbred line populations bred by inter-mating elite were sown in yield trials at five sites. All progenies were characterized using "genotyping by sequencing" method. A consensus map was developed, and missing genotypes were imputed using a Hidden Markov model to reach a total of 1987 polymorphic markers. Models accounting for genotype environment interactions were used to estimate the genetic component of each measured trait. Hence, Bayesian ridge regression was used to determine the predicted values and their relative accuracy in several combinations, testing full-sibs and half-sibs as training population for grain yield and 1,000 kernel weight. The high level of accuracy achieved suggests that GEBV for selection holds great potential for durum wheat breeding, as long as full-sibs are used as training populations, in combination with statistical models that account for G?E. In order to test the exploitability of genome scan to guide breeding crosses, a separate genome-wide association study was conducted. 288 elite were sown in the south of Morocco and at two sites along the Senegal River for two years. These sites show a temperature differential of 10?C. Implementing a GE model facilitated identifying the most heat tolerant among the tested entries. 8,173 polymorphic SNPs were inquired, and several associations could be identified between markers and the ability to withstand the heat gradient. Hence, GWAS holds great potential to increase genetic gain in breeding via increased accuracy in determining the crosses to be made.

Tags:

Investigation on heat stress tolerance in bread wheat (Triticum aestivum. L) for the conditions of terminal heat stress.

BGRI 2018 Poster Abstract
Juned Bagwan Agharkar Research Institute Pune
yashavantha kumar,Kakanur, Shrikanth, Khairnar, Balgounda, Honrao, Vijendra, Baviskar, Ajit, Chavan, Vitthal, Gite, Deepak, Bankar, Sameer, Raskar, Satish chandra, Misra, , , , , , , , , , , ,

Heat stress globally remains the most important factor determining yield anomalies. Terminal heat stress shortens the duration of grain filling. Hence, this investigation was undertaken during the cropping season 2016-17 to evaluate heat stress tolerance of 32 bread wheat genotypes planted in timely (optimal temperature) and late (terminal heat stress) sown condition at Agharkar Research Institute, Pune. Data were collected and analyzed for various agronomical and physiological traits and also selection indices for stress tolerance, derived from grain yield of wheat genotypes under optimal and late sowing conditions. It was observed that the genotypes DBW 187, GW 477, HD 2932, DBW 107, PBW 752 were the highest yielding under timely sown condition whereas, HD 3226, DBW 187, HP 1963, HD 3219, DBW 196 were the highest yielding under late sown condition. DBW 187 was found to withstand the stress conditions. Minimum percent yield decrease and high yield stability index (YSI) was found in HD 3219 followed by HD 3226 and DBW 196 which indicated their better performance under stress condition. Harmonic mean, a stress tolerance selection index was found to be the best fit of linear model (R2 = 0.78) and a good indicator of high yield under heat stress condition. Physiological parameters, Chlorophyll (SPAD), canopy temperature (Infra-red thermometer) and vegetation index (NDVI) have not shown significant relation with yield, however, they were found to be significantly associated with yield contributing traits like biomass, thousand grain weight, grain number per spike. DBW 187 and HP 1963 showed stable yields with high PCA 1 and low PCA 2, indicating their resilience to stress conditions. The investigation has resulted in identification of genotypes for terminal heat stress conditions and also given greater insights in understanding the importance of physiological traits and stress tolerance indices in selection process.

Tags:

Spreading of wheat yellow rust pathogen (Puccinia striiformis West.) in the south of Russia in 2017

BGRI 2018 Poster Abstract
Galina Vladimirovna Volkova All Russian Research Institute of Biological Plant Protection
Irina Petrovna Matveeva

Yellow rust caused by Puccinia striiformis West. is a harmful and dangerous disease in the south of Russia. Yield losses under optimum conditions on highly susceptible varieties can vary from 10 to 100%. During the growing season of 2017, cool weather with constant precipitation from the third decade of April to the first decade of June contributed to the intensive development of the pathogen. Surveys of the main winter wheat production areas in five agroclimatic zones of the region revealed that yellow rust was prevalent in all areas. The maximum development of P.striiformis was observed in southern submontane and western Priazovsky agroclimatic zones. Some varieties such as Grom, Yuka, Tanya, Anka had losses to yellow rust of up to 30-40 %. In the central and northern agroclimatic zones, the losses averaged 5%, whereas in the dry eastern steppe zone losses were only up to 1%. The build up of yellow rust inoculum in the region raises concerns that in 2018, under favorable weather conditions in spring, winter wheat crops could be infected with the disease, especially in the wetter agroclimatic zones.

Tags:

Assessment of wheat varieties and Aegilops species on yellow rust resistance in Tajikistan

BGRI 2018 Poster Abstract
Firuza Nasyrova IBPPG TAS
Anvar,Jalilov, Zubaida, Kavrakova, Menu, Mamadyusufova, Botirov, Muhiddin, , , , , , , , , , , , , , , , , , , , , ,

The wild relatives of wheat, the genus Aegilops is of great interest for breeding. Many species of the genus Aegilops are distinguished by such valuable properties as resistance to rust diseases, drought resistance, and salt tolerance.
The evaluation of local wheat varieties on resistance to yellow rust showed that local varieties showed high resistance to the pathogen and were amazed from 0 to 10 %. Evaluation of Aegilops species for resistance to yellow and brown rust, showed that the species Aegilops triunciales showed high resistance to yellow and brown rust, except Ae. triunciales, collected in the Rudaki district and showed moderate resistance to brown rust - 20%. The view of the Aegilops cylindrical collected in the Rudakinsky district showed a moderate resistance to yellow rust and a high resistance to brown rust. View Aegilops tauschii, collected in the Rudakinsky district had a high resistance to yellow and brown rust. Species Aegilops crassa to yellow and brown rust showed a reaction from moderate resistance - 30% to moderate susceptibility - 40%. As a result of the studies to assess the resistance of wheat varieties in Central Tajikistan, the cultivars Jaldak, Safedaki Gorchivin and Viyod, which had high resistance to yellow and brown rust, as well as Pamir and Surkhak varieties, showed moderate resistance.
Distinct varieties of wheat with high and moderate resistance to the pathogen of yellow rust can be used as parental forms for breeding new varieties of wheat. Studies on assessing the resistance of Aegilops species have shown that the species Aegilops triunciales has a high resistance to the pathogen of yellow rust. Species of Aegilops tauschii and Aegilops crassa, collected from the Hissar salt source, had moderate resistance to the pathogen. These species of Aegilops can be used in the selection of new varieties of wheat.

Tags:

Molecular screening of stem rust resistance genes Sr11, Sr26 and Sr31 in wheat genotypes of Azerbaijan

BGRI 2018 Poster Abstract
Samira Rustamova Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences
Shahriyar Sadigov, Alamdar Mammadov, Irada Huseynova

Rust of cereals are considered to be an important disease in many countries, including Azerbaijan. One of these is stem rust caused by Puccinia graminis f. sp. tritici (Pgt). Extensive research on the identification of wheat stem rust resistance genes and effectiveness of these genes in various geographical regions have been conducted. Genetic resistance is one of the most effective ways for controlling stem rust. Sixty-nine stem rust resistance genes (including 45 identified Sr genes and 24 genes with temporary designations) are registered in the Komugi Wheat Genetics Resource Database. It is important to use proper combinations of resistance genes in developing lasting resistance wheat. The main purpose of the study was to identify lines caring Sr11, Sr26 and Sr31 genes, which are effective to the predominant Pgt races in Azerbaijan. Durum and bread wheat genotypes differing in their disease resistance, productivity and other physiological traits were chosen from the wheat gene bank of the Research Institute of Crop Husbandry (Baku, Azerbaijan) for analysis. DNA extraction was carried out according to standard CTAB protocol. RT-PCR performed using KASP markers (KASP_6BL_BS0074288_51 and KASp_6BL_Tdurum contig55744_822) identified nine durum genotypes (out of 34 genotypes) and seven wheat genotypes (out of ten genotypes), caring Sr11. Using the dominant STS marker (Sr26#43) a diagnostic 207 bp amplicon for Sr26 gene, was observed in 11 of the 42 wheat genotypes tested. In eight of the 42 wheat genotypes tested, the diagnostic 1,110 bp amplicon was observed using the Lr26-Sr31-Yr9 locus specific marker iag95, characteristic of Sr31 gene located at 1BL.1RS translocation. For the first time, wheat germplasm in Azerbaijan was analyzed using KASP genotyping technology and genetic resources, and resulted in the identification of wheat lines with effective resistant to Puccinia graminis f. sp. tritici race TKTTF.

Tags:

Single/multi trait genome-wide association and SNP effect estimation revealed complex architecture of rust resistance in 2300 wheat accessions

BGRI 2018 Poster Abstract
Reem Joukhadar La Trobe University
Antony Gendall, Hans Daetwyler, Matthew Hayden

Wheat stem (Sr), leaf (Lr) and stripe (Yr) rust pathogens are among the most destructive fungal diseases threatening global wheat production. We utilized 2300 wheat accession including worldwide landraces, cultivars, breeding materials and 341 synthetic accessions backcrossed with three widely grown Australian cultivars (Annuello, Yitpi and Correll) to investigate rust resistance under wide environmental conditions. The germplasm was genotyped with 90K SNP chip, and was phenotyped for two seasons in three different environments against Sr and Lr and in four different environments against Yr. Different environments for each trait showed significant correlation with mean r values of 0.53, 0.23 and 0.66 for Lr, Sr and Yr; respectively. Single-trait genome wide association (GWAS) revealed several environment-specific QTL and multi-environmental QTL distributed on all chromosomes except 6D. Multi-trait GWAS confirmed a cluster of Yr QTL on chromosome 3B (within 8.3 cM) as well as a QTL for Sr and Lr on chromosome 3D. Linkage disequilibrium and comparative mapping showed that at least three Yr QTL exists within the 3B cluster including the durable rust resistance gene Sr2/Yr30. The same region was effective against Sr resistance but did not pass the stringent significant threshold in two environments. The 3D QTL was found mainly in the synthetic germplasm with Annuello background which is known to carry the Ag. elongatum 3D translocation carrying Sr24/Lr24 resistance gene. Interestingly, estimating the SNP effect using BayesR method showed that the correlation among the highest 5% QTL effects across environments were lower than that for the small effect QTL with differences in r values of 0.25 and 0.2 for Lr and Yr respectively. These results indicate the importance of small effect QTL that cannot be captured using GWAS in achieving durable rust resistance. The detected QTL in this study are useful resources for improving bread wheat resistance to rust diseases.

Tags:

Sources of Resistance to Septoria Tritici Blotch Identified in Ethiopian Durum Wheat

BGRI 2018 Poster Abstract
Carlo Fadda Bioversity International
Bogale Nigir, Cherinet Alem, Yosef G. Kidane, Mario Enrico Pè, Matteo Dell'Acqua

Septoria tritici blotch (STB) is a devastating fungal disease affecting durum and bread wheat cultivation worldwide. The search for resistance sources in untapped genetic resources may speed up breeding for STB resistance. Ethiopian durum wheat landraces represent a valuable source of allelic diversity for several traits, including disease resistance. In this study, we measure STB phenotypes under natural infection on two interconnected populations: i) a diversity panel comprising 318 Ethiopian durum wheat lines, mostly farmer varieties, and ii) a nested association mapping (NAM) population developed from a subset of the diversity panel. Phenology, yield and yield component traits were concurrently measured in the populations. We evaluated the distribution of STB resistance in Ethiopian genetic materials and the relationship existing between STB resistance and agronomic traits. STB resistance sources were found in landraces as well as in NAM lines. The genetic material was genotyped with more than 13 thousand genome-wide SNP markers to describe the linkage disequilibrium and genetic structure existing within the panels. The genotyping information was combined with phenotypes to identify marker-trait associations and loci involved in STB resistance. We identified several loci, each explaining up to 10% of the phenotypic variance for disease resistance. We developed KASP markers tagging the most interesting loci to allow the uptake of our results in a breeding perspective. Our results showed that the Ethiopian untapped allelic diversity bears a great value for studying the molecular basis of STB resistance and for breeding for resistance in local and international material.

Tags:

A new warrior race of Puccinia striiformis f.sp tritici in Syria

BGRI 2018 Poster Abstract
Mohammad Kassem Aleppo University, Aleppo , Syria
Bassam,Souliman, Naem, Al-Housien, Mohammad Shafick, Hakiem, Miloudi.M, Nachit, , , , , , , , , , , , , , , , , , , , , ,

Wheat yellow rust, caused by Puccinia triticina f. sp. tritici, is the major problem in wheat production in most parts of West Asia. Monitoring of the pathogen virulence factors and their changes provides basic information for the development of an early warning system. Wheat yellow rust has become increasingly important in the Syrian central and coastal areas during the last three years, The objective of this study was to identify races of the pathogen. Yellow rust samples collected at sites in the central and the coastal plains, were analyzed on differential host genotypes with known seedling resistance genes. According to the results of race determination, races 230E150, 166E150, 230E142 and 462E128 were identified. The race 462E128 designated the Warrior race, was identified at several sites across the Syrian central plains at the end of the 2017 growing season (early and Mid-May) when yellow rust exploded suddenly on a number of varieties, despite their previous high resistance ratings. The infections rapidly reached significant levels, in spite of the high temperature (up to 33?C) and the absence of rainfall or irrigation. This new virulent race (462E128) has been able to attack wheat lines with several major resistance gene(s) including: Spaldings Prolific (SP), Yr 3+4, Triticum spelta (Yr5), which remained effective until 2016 in Syria, Virulence to lthe resistance genes Yr1, Yr2, Yr2+, Yr3V, Yr3ND, Yr4+, Yr6, Yr6+, Yr7, Yr7+, Yr9, Yr9+, Yr11, Yr12, Yr18, Yr24, Yr26 Spaldings Prolific (YrSP), Anza (YrA+) Spaldings Prolific (SP), Yr 3+4, Triticum spelta (Yr5) and Selkirk (YrSK) was also found. Virulence to Carstens V (CV), Yr 15/6* Avocet S and Yr 5/6* Avocet S; was not found. According to our findings, the Warrior race has increased in frequency within the mix of yellow rust races in these areas in Syria . It is expected that the Warrior yellow rust race will cause damage on resistant wheat cultivars in 2018.

Tags:

Monitoring wheat diseases in Nepal 2014-2016

BGRI 2018 Poster Abstract
Suraj Baidya Plant Pathology Division, Nepal Agricultural Research Council
Baidya Nath Mahto, Durba Bahadur, Thapa Roshan, Basnet Nautan Raj, Gautam Sesh, Raman Upadhyaya

Disease surveillance is very important in establishing the status of disease response in crops. During the 2014 to 2016 wheat seasons, foliar blight (spot blotch caused by Bipolaris sorokiniana and tan spot caused by Pyrenophora tritici-repentis) was recorded as severe across the entire whole plains region. Foliar blight was moderate in the mid hills, especially the Kathmandu valley. Leaf rust was severe (10MS - 100S) at several places in the mid hills. This could be due either to climatic conditions or varieties susceptible to the prevailing pathotypes. Yellow rust was also recorded up to 100S in the Kathmandu valley. Newly released varieties Gaura and Dhaulagiri showed yellow rust incidence of 20MS to 40S. Stem rust was sporadic and light and was observed very late in the season (tR - 10MR) in far western districts and the Kathmandu valley. Powdery mildew was moderate and localized. Loose smut was found at low levels throughout the mid hills. In 2014, Karnal bunt (caused by Tilletia indica) was also recorded in far western regions. Five different pathotypes of P. triticina (121R63-1, 21R55, 21R63 and 0R9) and one Pst pathotype (110S119) have prevailed during the last few years. Wheat genotypes were evaluated at Khumaltar and those reputed to have Yr27, Yr27+, Yr27+Yr18, Yr31+APR, Yr9, Yr10 and Yr15 were resistant. Similarly, genotypes containing Lr34+ had lower leaf rust severities than others.

Tags:

Pages