All BGRI Abstracts

Displaying 1 - 10 of 415 records | 1 of 42 pages

Identification of resistance wheat cultivars using molecular marker against yellow rust in Azerbaijan

BGRI 2018 Poster Abstract
Konul Aslanova Research Institute of Crop Husbandry, Azerbaijan
,, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

A study was conducted between 2014 and 2016 aiming at determining resistance genotypes of 51 local wheat cultivars in Azerbaijan. The cultivars were evaluated in five different agro-ecological zone including Absheron and Tar-Tar (Irrigated area), Qobustan (dry semi subtropical area),Sheki (rain fed area), and Jalilabad (dry area) against three of the rust pathogens under natural conditions with four repetitions at each region. Field responses under natural infection were recorded according to Modified Cobb's scale for major field responses (Restance (R), Moderelt Resistance MR), Moderet Sesusptable (MS), and Sussciptabe (S) and diseases severity (0-100%). For molecular analysis, genomic DNA was extracted from leaves and the following six markers (Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, and Yr26) were used to identify resistance genes at Plant Genomics College of Agronomy Northwest A&F University China. Marker analysis revealed that Yr5 was present at least in 12 cultivars including Murov, Murov-2, Shafag, Shafaq-2, Nurlu-99,Fatima, Azamatli-95,Agali, Gunashli, Saba Giymatli 2/17, P?rzivan-1, Tale-38. In addition, Yr9 was present in seven culitivars (Pirshahin-1, Layagatli-80, Shafag-2, Zirva-85,Fatima, Agali, Gunashli). Yr10 was present in eight cultivars (Yegana, Garagilchig-2, Yagut, Pirshahin, Shirvan-5, Barakatli-95, Bayaz, Girmizi bugda). And Yr18 was present in Mirbashir-128, Azamatli-95, Gunashli, Akinchi-84, Shirvan-3 cultivars. Yr26 worked well but was not found in any of cultivars. Yr17,Yr15 did not work very well with this method.


Large scale wheat stem rust outbreaks in Western Siberia / Northern Kazakhstan in 2015-2017

BGRI 2018 Poster Abstract
Vladimir Shamanin Omsk State Agricultural University, Omsk, Russia
Elena Salina, Yuriy Zelenskiy, Alma Kokhmetova, Mehran Patpour, Mogens Hovmøller, Pablo Olivera, Les Szabo, Yue Jin, Marcel Meyer, Chris Gilligan, Matthew Hort, Dave Hodson, Alexey Morgunov

Short season, high latitude spring wheat is grown on 7 million ha in Western Siberia and 10 million ha in Northern Kazakhstan. Despite relatively low wheat yields (1.5 t/ha), the region is extremely important for regional and global food security. Leaf rust dominates, occurring three years out of five, especially in favorable years with higher rainfall. Since 2010, stem rust has been observed at an increasing number of sites. The first large-scale stem rust outbreak occurred in 2015 and affected about 0.5-1 million ha in Omsk, Western Siberia. In 2016, 2 million ha were affected in the Omsk and Altay regions, while 1 million ha in the Kostanay and Northern Kazakhstan regions were affected in 2017. Estimated yield losses reached 25-35% each year. Factors associated with the outbreaks included: higher rainfall in late June and July; cultivation of susceptible varieties; and an increased area planted to winter wheat, which serves as a source of inoculum. Sampling and race analysis revealed a diverse pathogen population, indicative of a sexual recombination. A total of 51 races were identified from 31 samples taken in 2015 and 2016. All races were avirulent on Sr31. The majority of varieties released and cultivated in the region are susceptible to stem rust and require replacing. A recent study of 150 local resistant varieties and breeding lines indicated that the genetic basis of resistance was limited to Sr25, Sr31, Sr36, Sr6Ai, Sr6Ai#2, and additional unknown major genes. Adult-plant resistance to stem rust was observed in less than 20% of the germplasm. The potential impact of these large stem rust outbreaks on other wheat growing regions is being investigated by analyzing spore wind dispersal patterns. Further research is required to understand and mitigate the sudden appearance of stem rust as a disease of economic importance.
Study at Omsk State Agrarian University was supported by the Russian Science Foundation (project No. 16-16-10005).


Assessment of wheat varieties and Aegilops species on yellow rust resistance in Tajikistan

BGRI 2018 Poster Abstract
Firuza Nasyrova IBPPG TAS
Anvar,Jalilov, Zubaida, Kavrakova, Menu, Mamadyusufova, Botirov, Muhiddin, , , , , , , , , , , , , , , , , , , , , ,

The wild relatives of wheat, the genus Aegilops is of great interest for breeding. Many species of the genus Aegilops are distinguished by such valuable properties as resistance to rust diseases, drought resistance, and salt tolerance.
The evaluation of local wheat varieties on resistance to yellow rust showed that local varieties showed high resistance to the pathogen and were amazed from 0 to 10 %. Evaluation of Aegilops species for resistance to yellow and brown rust, showed that the species Aegilops triunciales showed high resistance to yellow and brown rust, except Ae. triunciales, collected in the Rudaki district and showed moderate resistance to brown rust - 20%. The view of the Aegilops cylindrical collected in the Rudakinsky district showed a moderate resistance to yellow rust and a high resistance to brown rust. View Aegilops tauschii, collected in the Rudakinsky district had a high resistance to yellow and brown rust. Species Aegilops crassa to yellow and brown rust showed a reaction from moderate resistance - 30% to moderate susceptibility - 40%. As a result of the studies to assess the resistance of wheat varieties in Central Tajikistan, the cultivars Jaldak, Safedaki Gorchivin and Viyod, which had high resistance to yellow and brown rust, as well as Pamir and Surkhak varieties, showed moderate resistance.
Distinct varieties of wheat with high and moderate resistance to the pathogen of yellow rust can be used as parental forms for breeding new varieties of wheat. Studies on assessing the resistance of Aegilops species have shown that the species Aegilops triunciales has a high resistance to the pathogen of yellow rust. Species of Aegilops tauschii and Aegilops crassa, collected from the Hissar salt source, had moderate resistance to the pathogen. These species of Aegilops can be used in the selection of new varieties of wheat.


Single/multi trait genome-wide association and SNP effect estimation revealed complex architecture of rust resistance in 2300 wheat accessions

BGRI 2018 Poster Abstract
Reem Joukhadar La Trobe University
Antony Gendall, Hans Daetwyler, Matthew Hayden

Wheat stem (Sr), leaf (Lr) and stripe (Yr) rust pathogens are among the most destructive fungal diseases threatening global wheat production. We utilized 2300 wheat accession including worldwide landraces, cultivars, breeding materials and 341 synthetic accessions backcrossed with three widely grown Australian cultivars (Annuello, Yitpi and Correll) to investigate rust resistance under wide environmental conditions. The germplasm was genotyped with 90K SNP chip, and was phenotyped for two seasons in three different environments against Sr and Lr and in four different environments against Yr. Different environments for each trait showed significant correlation with mean r values of 0.53, 0.23 and 0.66 for Lr, Sr and Yr; respectively. Single-trait genome wide association (GWAS) revealed several environment-specific QTL and multi-environmental QTL distributed on all chromosomes except 6D. Multi-trait GWAS confirmed a cluster of Yr QTL on chromosome 3B (within 8.3 cM) as well as a QTL for Sr and Lr on chromosome 3D. Linkage disequilibrium and comparative mapping showed that at least three Yr QTL exists within the 3B cluster including the durable rust resistance gene Sr2/Yr30. The same region was effective against Sr resistance but did not pass the stringent significant threshold in two environments. The 3D QTL was found mainly in the synthetic germplasm with Annuello background which is known to carry the Ag. elongatum 3D translocation carrying Sr24/Lr24 resistance gene. Interestingly, estimating the SNP effect using BayesR method showed that the correlation among the highest 5% QTL effects across environments were lower than that for the small effect QTL with differences in r values of 0.25 and 0.2 for Lr and Yr respectively. These results indicate the importance of small effect QTL that cannot be captured using GWAS in achieving durable rust resistance. The detected QTL in this study are useful resources for improving bread wheat resistance to rust diseases.


Occurrence of the Warrior Race of Wheat Stripe Rust (Puccinia striiformis f. sp. tritici) in Egypt, 2015

BGRI 2018 Poster Abstract
Atef Shahin Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Egypt.
Wasif Youssif, Mohamed Hasan

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, [Pst] is a widespread and damaging disease of wheat (Triticum aestivum L.), causing significant losses in yield and quality. During the 2015, eight stripe rust physiological races were identified in greenhouse tests i.e. 0E0, 6E4, 70E20, 128E28, 134E244, 143E245, 250E174, and 450E214. Race 0E0 was the most common and avirulent race, and races 143E245, and 450E214 had high virulence on most of tested Yr resistance gene wheat lines. In the same season, an unusual stripe rust infection occurred in spring wheat at Sakha region in Egypt. Some of the most important commercial cultivars such as (Misr 2, Giza 168 and Sakha 61), known as resistant to the previously characterized races of Pst in Egypt have become susceptible under field conditions. Infections of stripe rust was observed on some wheat lines with Yr genes previously known to be resistant, such as Yr1, Yr17 and Yr32, in a yellow-rust trap nursery at Sakha (30.601400? N, 31.510383? E), northern Egypt. Independent race analysis of collected samples from four governorates i.e. Kafrelsheikh, Al-Sharqia, Dakahleia and Damietta at Sakha Agricultural Research Station in Kafrelsheikh confirmed the detection of a new Pst race in Egypt. Aggressive races with virulence to Yr27 were detected on differentials with Yr27 (Yr27/6*Avocet S), and (Ciano 97) during the 2012 in Egypt. In addition, the Warrior race (virulent on: Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, Yr32, and YrSp) was observed in the 2015 crop season, which indicated continued changes in the Pst the population. In Europe, the Warrior race first identified in 2011 in the United Kingdom, has caused significant change in yellow rust susceptibility of several varieties of both wheat and triticale. In a conclusion, some of wheat cultivars, known to be resistant, were shifted to susceptible due to these new races.


Genetic variability and association mapping of anther extrusion in spring bread wheat

BGRI 2018 Poster Abstract
Samira El Hanafi International Center for Agricultrural Research in Dry Areas
Wuletaw,Tadesse, Najib, Bendaou, , , , , , , , , , , , , , , , , , , , , , , , , ,

Hybrid wheat is a promising technology to increase yields worldwide. High seed production costs and low heterosis are the main constraints for the development of hybrid wheats. Maximizing heterosis, and selection and utilization of appropriate morphological, floral and flowering traits to optimize outcrossing are important for hybrid seed production. For an efficient hybrid wheat seed production, high anther extrusion is required to promote cross fertilization and to ensure a high level of pollen availability. A pool of 200 elite spring bread wheat male parental lines was visually assessed for anther extrusion in the plastic-house and field environments. Genome-wide association studies (GWAS) for anther extrusion was carried out using a total of 12725 SNP markers. A wide genotypic variance was observed. Several significant (|log10(P)| > 3.0) marker trait associations (MTAs) were detected. Both genotypes and environment influenced the magnitude of the anther of extrusion. The consistently significant markers could be helpful to introduce anther extrusion trait in high yielding varieties and consequently improve hybrid-seed production in wheat.


Isolation of durable wheat stem rust resistance gene Sr26 and enhancement of its deployment

BGRI 2018 Poster Abstract
Jianping Zhang CSIRO Agriculture and Food, Australia
Timothy Hewitt, Peng Zhang, Zacharias A. Pretorius, Narayana Upadhyaya, Rohit Mago, Sambasivam Periyannan, Xiuying Kong, Burkhard Steuernagel, Brande H. Wulff, Evans S. Lagudah

Multiple rust resistance gene combinations are considered as a practical solution for providing durable rust resistance and preventing resistance breakdown arising from single gene deployment. The stem rust resistance locus Sr26, originally derived from Thinopyrum ponticum and introgressed into wheat as a chromosome translocation, is one of the very few genes conferring durable resistance for almost 40 years to all known races of stem rust, including the highly virulent stem rust race Ug99 (TTKSK) and its derivatives (Dundas et al. 2015). To understand the underlying mechanisms of its unusual long-term effectiveness and to explore allelic diversity in different Th. ponticum accessions for other functional alleles that may offer new sources of resistance, we used comparative genomics and gene capture techniques (Resistance gene enrichment sequencing, RenSeq) as complementary strategies for isolating the target gene (Steuernage et al. 2016). Sr26 region was first mapped using NB-LRR (Nucleotide-binding site and leucine-rich repeat) sequences from the orthologous gene members located on the long arm of chromosome 6D from Aegilops tauschii (the D-genome donor of wheat) reference genome. Subsequently, we revealed a cluster of NB-LRR sequences located at the distal end of the Th. ponticum introgression segment that were absent in the smallest interstitial Sr26 deletion mutant. Therefore, we substantially narrowed down the genetic interval for Sr26. In addition to this approach, we subjected the mutant population to RenSeq pipeline. A candidate gene of Sr26 has been successfully identified to be a NBS-LRR type resistance gene. Validation of the gene candidate by complementation studies is currently in progress. In order to enhance durable resistance, genetic stocks of Sr26 from different backgrounds as well as a panel of Sr26-APR (Adult Plant Resistance) gene combinations have been generated to further investigate the resistance response of Sr26 in combination with different multi-pathogen APR genes.


In vitro response of durum wheat (Triticum durum Desf.) varieties under drought stress

BGRI 2018 Poster Abstract
Sourour Ayed Research Center of Agricultural and Development in Northwest Semi-arid regions of Tunisia
Afef,OTHMANI, Olfa, SLAMA-AYED, Hajer, SLIM-AMARA, Mongi, BEN YOUNES, , , , , , , , , , , , , , , , , , , , , ,

Eleven durum wheat (Triticum durum Desf.) genotypes were screened to select for drought-tolerance under in vitro immature embryos culture. Drought stress is induced by using five PEG concentrations (0, 200, 270, 295 and 310 g/l of PEG 6000). Results showed, for all studied traits, significant differences among PEG treatments and genotypes. In fact, increasing PEG concentration decreases relative growth rate, callus water content, relative water content, in vitro tolerance and relative tolerance. Biplot analysis indicated that the first two PCs (principal components 1 and 2) explain 70.5 % and showed that Karim, Mahmoudi and Om Rabiaa are respectively the most drought tolerant varieties tested, however, Ben Bechir, Maghrbi and Nasr were the most sensitive.


Suitability of planting time to get iron and zinc enriched wheat varieties

BGRI 2018 Poster Abstract
Sadaf Shamim Cereal Laboratory, Wheat Research Institute, Faisalabad, Punjab, Pakistan
Hira Shair, Anjum Javed, Muhammad Abdullah, Makhdoom Hussain, Javed Ahmed

Globally, more than two billion people are undernourished in the world and deficient in key vitamins and minerals, making it the world's greatest health risk factor. Among these, iron and zinc are of greater significance from human nutrition perspective, ranking them 5th and 6th in developing countries. The population most vulnerable to these micronutrient deficiencies is women and children. Iron deficiency results about 1.62 billion people as anemic, largely preschool children (47%). It is responsible for approximately 20854 deaths and two million disability adjusted life years (DALYs) among children under five years old, whereas, zinc deficiency is responsible for approximately 4% of deaths and 16 million DALYs, among children under age five. This leads to malnutrition ultimately leading to a disabled society.
Widespread accessibility of these nutrients is the solution to cater malnutrition. Wheat, the "staff of life," consumed by masses can help eradicate "hidden hunger." For this, fortification and bio-fortification are highly talked about, but one having limitations in reaching the masses and other a long term intervention, respectively, suitability of planting times to screen out varieties high in zinc and iron, is an on-field solution. In a study, wheat varieties; Punjab-11, Millat-11 and Galaxy-13 were selected from three planting times, with an interval of one month. Results reveal varieties exhibited their natural genotypic response but planting time impact on Zn and Fe were visibly significant. 30th December gave higher contents of Fe and Zn as compared to previous planting dates of the same year. Iron on an overall basis ranged from (135.0-147.0) ppm, while Zinc gave a confined range of (30.2-33.2) ppm. Thus, concluded that comparatively delayed sowing favours the mineral content concentration in wheat grains. And these creamed out varieties can readily be used in crosses with high yielding varieties, in order to make our wheat mineral sufficient.


Mining sources of resistance to stripe rust in bread and durum wheat landraces from ICARDA genebank collection

BGRI 2018 Poster Abstract
Kumarse Nazari Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), ICARDA, Menemen, Izmir, Turkey
Muhammad Massub Tehseen, Ezgi Kurtulus, Maha Al Ahmed, Ahmed Amri, Mariana Yazbek, Ali Shehadeh

In 2016 the bread wheat (BW) and durum wheat (DW) landrace accessions were evaluated against PstS2 and in 2017 against a mixture of PstS2 and warrior race in field inoculations at Izmir precision stripe rust phenotyping platform. Inoculation was carried out three times during seedling, tillering and booting stages using mixture of fresh spore and talcum powder. Adult-plant responses of tested accessions were recorded according to 0-9 scale once the flag leaf of the susceptible cultivar became fully susceptible. During 2016, out of 3319 BW accessions, 1135 (36%), 871 (28%) and 1133 (36%) were found resistant (1-3 scale), moderately resistant (4-6), and susceptible (7-9) to PstS2, respectively. Amongst the resistant accessions in 2016, 1043 (33%) remained resistant while 786 (25%) showed moderate resistant and 1310 (42%) became susceptible. In 2017, 43% of moderately resistant accessions showed susceptibility to warrior race and 57% remained resistant to moderately resistant. Within the susceptible accessions to PstS2 race in 2016, 22% showed resistance to the warrior race and the remaining were susceptible. In case of DW in 2016, 76% (553) of the accessions were resistant to PstS2, 23% (163) were moderately resistant and only 1% (7) were found susceptible. In 2017, 329 (46%) of the resistant accessions were found resistant, whereas 289 (40%) and 105 (15%) showed moderately resistance and susceptible reaction to Warrior race, respectively. The present data indicated that BW landraces were generally more susceptible to stripe rust than DWs. Susceptibility of both BW and DW accessions to Warrior race indicated that most likely some of the uncharacterized resistance genes which conferred resistance to PstS2 were ineffective against the warrior race. Sources of resistance to both races were identified in both BW and DW. Genetic architecture of identified sources of resistance in present study requires further investigations.