All BGRI Abstracts

Displaying 1 - 10 of 415 records | 1 of 42 pages

Variation in Leaf Tip Necrosis and its effect on yield traits in wheat

BGRI 2018 Poster Abstract
VinodKumar Mishra Institute of Agricultural Sciences, Banaras Hindu University, India-221005
Punam Singh,Yadav, Naveen Kumar, Umesh Chandra, Dubey, Ramesh Chand, Sundeep Kumar, Arun Kumar Joshi

Four leaf rust adult plant resistance genes (Lr34, Lr46, Lr67 and Lr68) are known to be associated with leaf tip necrosis (LTN). LTN caused by these genes is different from each other at phenotypic level. LTN associated with APR genes Lr34, Lr46 and Lr67 has been designated as Ltn1, Ltn2 and Ltn3. Seventy-seven CIMMYT genotypes were selected to find out the association between genotypic and phenotypic variability for LTN and its association with yield traits; 1000 grain weight, grain yield, leaf area and percentage of leaf tip necrosis in the flag leaf of main tiller. All the genotypes were screened for the presence of 3 APR genes with linked markers, csLV34 for Lr34; Xwmc44 and Xgwm259 for Lr46 and Xcfd71 for Lr67. The genotypes were grouped into 5 classes; only Lr34, only Lr46, only Lr67, Lr34+L46+Lr67 and genotypes lacking all three genes. Molecular analysis revealed that 7 genotype with Lr34 only, 6 with Lr46 only, 7 with Lr67 only, 13 with all the 3 genes, and 28 without any Lr gene. Phenotypic data of LTN percentage was compared and it was noted that maximum LTN % was observed for Lr67 (7.811%) followed by Lr46 (7.348%) and Lr34 (6.47%). Surprisingly, presence of all three genes reduced the LTN% (4.7055%) as compared with absence of all three genes (6.011%). It was also observed that the three genes simultaneously reduced 1000 grain weight and plot yield. All three genes increased leaf area highly significantly both when they are alone or together (34.7 to 44.7 cm2) in comparison to those genotypes (24.7 cm2) which lacks these Lr genes and also reduced 1000-grain weight and plot yield but non-significantly.

Tags:

Epidemics of stripe (yellow) rust on wheat and triticale fields of Algeria in 2016.

BGRI 2018 Poster Abstract
Nora DERBAL Laboratoire de Biologie, Eau et Environnement, département d'écologie,university of 8 mai1945 Guelma, Algeria
Abdelkader Benbelkacem

Epidemics of stripe (yellow) rust on wheat and triticale fields of Algeria in 2016. Wheat and triticale fields in 69 localities from the eastern regions of Algeria were assessed for epidemics, which started in early march to late may corresponding to booting stage up to early dough stage of the alternative type crop. The infection had incidences ranging from 30 to 100% and severities of 30 to 70%. The newly released cultivar Ksar sbahi was infected up to 10%. The old improved durum cultivars HAR3116 (SHA7/KAUZ) and HAR1407 (COOK/VEES//DOVES) were rust-free at a number of locations. In the Amhara region, the wheat cultivars were at stem elongation to flowering with disease incidences of 50-100% and severities of 30-90%. The oldest cultivar ET 13 A2 was severely infected in the north Shewa zone of Amhara region. Triticale cultivar Logaw Shibo was susceptible at elevations above 2700 m and showed trace reactions at elevations below 2500 m. The local bread wheat cultivar grown in all wheat growing areas was only slightly affected by the disease. Yellow rust was rarely recorded in the Tigray region. Severe epidemics were recorded in the highlands and even at lower elevations where it is not commonly found on wheat.

Tags:

Evaluation and Selection of Wheat Lines for Biotic and Abiotic Stresses in Pakistan

BGRI 2018 Poster Abstract
Muhammad Imtiaz CIMMYT
Muhammad,Noor, Makhdoom, Hussain, Majid, Nadeem, Monsif, ur Rehman, Jesse, Poland, Ravi, Prakash Singh, Matthew, Reynolds,, , , , , , , , , , , , , , , ,

Drought and heat along with rusts are the most common biotic and abiotic stresses that affect growth, development and yield of wheat crop in Pakistan. CIMMYT in partnership with Wheat Research Institute Faisalabad (WRI-Fsd), USDA, and Kansas State University initiated an effort to develop heat tolerant, high yielding, and farmer-accepted rusts resistant wheat varieties for Pakistan. A set of 1656 wheat lines received in the form of EPCBW and SABWGPYT nurseries were tested in 2013-14 and 2014-15 wheat season, respectively. Testing of the materials at (WRI-Fsd), Pakistan under normal and late planting conditions resulted in the selection of 55 lines with higher grain yield and resistant to both leaf (LR) and yellow (YR) rusts. Among these lines, the line no. 1027 produced maximum yield (5.78 ton/ha) under normal and line no. 5030 produced maximum yield (3.38t/ha) under late planting conditions with resistance to both LR and YR. Further evaluation of the selected 55 lines as HYT-60 in 2015-16 showed the average grain yield ranged from 4.98 to 2.51 ton/ha under normal and 1.74 to 0.73 t/ha under late planting. Three lines HYT-60-57, HYT-60-7 and HYT-60-5 were included in the first year advanced yield trials to test for their potential as commercial cultivars while another seventeen lines were distributed as HYT-20 to six national wheat breeding programs for yield testing at key location which will enable national partners to combine yield potential with resistance to biotic and abiotic stresses.

Tags:

Mapping of all-stage leaf rust resistance genes in Triticum dicoccoides derived recombinant inbred line (RIL)

BGRI 2018 Poster Abstract
Ahmed Elkot School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana-141004 India
Rohtas,Singh, Satinder, Kaur, Parveen, Chhuneja, , , , , , , , , , , , , , , , , , , , , , , ,

Leaf rust caused by Puccinia triticina is one of the most historical and economically important wheat diseases. Breeding for new cultivars with effective gene combinations is the most promising approach for reducing losses due to leaf rust. Wild emmer wheat, Triticum dicoccoides, the progenitor of modern tetraploid and hexaploid wheats, is an important resource for new variability for disease resistance genes. An accession of T. dicoccoides acc. pau4656 showed resistance against prevailing leaf rust races in India, when tested at the seedling and adult plant stage. The introgression line, developed from the cross of the leaf rust resistant T. dicoccoides acc. pau4656 and the susceptible T. durum cultivar Bijaga yellow, was crossed with T. durum cultivar PBW114 to generate recombinant inbred lines (RIL) for mapping leaf rust resistance gene(s). RIL population was screened against highly virulent leaf rust race 77-5 at seedling stage and inheritance analyses revealed the segregation of two leaf rust resistance genes. The genes have been temporarily designated as LrD1 and LrD2. A set of 387 SSR marker was used for bulked segregant analysis (BSA). The markers showing diagnostic polymorphism in the resistant and susceptible bulks were amplified on whole of the population. Single marker analysis using MapDisto software placed LrD1 on the long arm of chromosome 6A linked to the SSR marker Xwmc256 and LrD2 on long arm of chromosome 2A close to the SSR marker Xwmc632. T. durum cv. PBW114 used in the present study was also resistant to leaf rust at the seedling stage. So one of these leaf rust resistance genes might have been contributed by the PBW114 and other by T. dicoccoides. The current study identified valuable leaf rust resistance genes for deployment in wheat breeding programme.

Tags:

Changes of some physiological parameters of different wheat genotypes in ontogenesis depending on infection of leave level

BGRI 2018 Poster Abstract
Javanshir Talai Research Institute of Crop Husbandry, Azerbaijan
ATIF,ZAMANOV, Konul, Aslanova, , , , , , , , , , , , , , , , , , , , , , , , , ,

Rust diseases are considered the main stress factors that limit wheat productivity in the Azerbaijan. The studies on the impact of rust diseases on physiological processes at reproductive vegetation period is of very importance with view of evaluating size of yield and quality of the studied genotypes. For this purpose the studies focused on bread wheat genotypes (Triticum aestivum L.), which differ sharply by architectonics, biological peculiarities and resistance to rust diseases. Comparative evaluation of the studied genotypes by physiological and quality parameters has been undertaken in two options: over plants infected with diseases in natural background, and over healthy plants (fungicide sprayed plants). Area of photosynthesis apparatus of leaf story (18,3-50,2 sm2) of the studied wheat genotypes changes in wide interval. Infestation level of leaves with yellow rust (Puccinia striiformis West.) in wheat genotypes grown in natural infection background fluctuates between 5MS-40S in ontogenesis, but between 10MS-90S with brown rust (Puccinia recondita Desm.).
High level of infection with rust diseases leads to reduced size of leaf assimilation area and defoliation. Reduction of these dimensions makes up 10-90% in lower story leaves of genotypes infected with rust diseases, but 20-30% in upper story leaves. Genotypes with large and bending leaves subject to this disease more frequently. Value of photosynthesis intensity in ontogenesis at upper story leaves of the genotypes infected with rust diseases at natural background fluctuates between 6-18 ?mol CO2 .m-2.s-1 depending on level of infection, but in healthy plants between 16-29 ?molCO2 .m-2.s-1. Negative impact of these diseases on normal course of plant physiological process ultimately causes is reflected in yield and quality parameters.

Tags:

Investigation on heat stress tolerance in bread wheat (Triticum aestivum. L) for the conditions of terminal heat stress.

BGRI 2018 Poster Abstract
Juned Bagwan Agharkar Research Institute Pune
yashavantha kumar,Kakanur, Shrikanth, Khairnar, Balgounda, Honrao, Vijendra, Baviskar, Ajit, Chavan, Vitthal, Gite, Deepak, Bankar, Sameer, Raskar, Satish chandra, Misra, , , , , , , , , , , ,

Heat stress globally remains the most important factor determining yield anomalies. Terminal heat stress shortens the duration of grain filling. Hence, this investigation was undertaken during the cropping season 2016-17 to evaluate heat stress tolerance of 32 bread wheat genotypes planted in timely (optimal temperature) and late (terminal heat stress) sown condition at Agharkar Research Institute, Pune. Data were collected and analyzed for various agronomical and physiological traits and also selection indices for stress tolerance, derived from grain yield of wheat genotypes under optimal and late sowing conditions. It was observed that the genotypes DBW 187, GW 477, HD 2932, DBW 107, PBW 752 were the highest yielding under timely sown condition whereas, HD 3226, DBW 187, HP 1963, HD 3219, DBW 196 were the highest yielding under late sown condition. DBW 187 was found to withstand the stress conditions. Minimum percent yield decrease and high yield stability index (YSI) was found in HD 3219 followed by HD 3226 and DBW 196 which indicated their better performance under stress condition. Harmonic mean, a stress tolerance selection index was found to be the best fit of linear model (R2 = 0.78) and a good indicator of high yield under heat stress condition. Physiological parameters, Chlorophyll (SPAD), canopy temperature (Infra-red thermometer) and vegetation index (NDVI) have not shown significant relation with yield, however, they were found to be significantly associated with yield contributing traits like biomass, thousand grain weight, grain number per spike. DBW 187 and HP 1963 showed stable yields with high PCA 1 and low PCA 2, indicating their resilience to stress conditions. The investigation has resulted in identification of genotypes for terminal heat stress conditions and also given greater insights in understanding the importance of physiological traits and stress tolerance indices in selection process.

Tags:

Wheat stem rust pathogen (Pgt) Identification and Characterization in Egypt using Single Nucleotide Polymorphism (SNP) markers.

BGRI 2018 Poster Abstract
Samar Mohamed Esmail Wheat Dis. Res. Dept., Plant Pathol. Res. Inst., A.R.C., Sakha, Egypt
Les John Szabo

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is one of the most serious disease of wheat worldwide. The discovery of new Pgt races in Africa, Ug99 and its variants, brings a new threat to global wheat production. In this study, 50 single pustule stem rust samples, were collected during 2015-2016 from the International Stem rust Trap Nursery (ISRTN) and commercial wheat fields in Sakha, the most important wheat growing region in Egypt. SNP-genotyping was carried out at USDA-ARS Cereal Disease Laboratory. Infection and genotype data confirmed that none of these samples belonged to the Pgt Ug99 race group. Forty-five samples were successfully genotyped consisting of 12 multi-locus genotypes (MLGs). The majority (86.7%) of the samples belonged to three clades: 10 samples, clade III-B (MLG.04, race TTRTF) collected from Misr 3, Sakha 95 and Sids 14 wheat lines; 12 samples, clade IV-A.2 (MLG.06, race TKTTF) collected from Sr 5, Sr6, Sr7a, Sr7b, Sr8b, Sr9a, Sr9e, Sr10, Sr11, Sr15, Sr16 and Sr17 wheat lines; 17 samples, clade IV-E.2 (MLG.11, race TKKTF) from Sr13, Sr14, Sr19, SrMcN, Sr24, Misr 1, Misr 2, Sakha95 and Sids 12 wheat lines. Pgt samples belonging to clades IV-A.2 and IV-E.2 have been observed from Europe to the Middle East, and samples from clade III-B from the southern Caucasus Mountains, Middle East to northeast Africa. The remaining six samples collected from Sr12, Sr18, Sr20, Sr21, Sr22 and Sr25 wheat lines represent two new genotypes (MLG.14 and MLG.17) that have not been assigned to clades. MLG.14 was also observed in samples from Azerbaijan, Iraq and Eritrea. In contrast, this represents the first detection of MLG.17. These results suggest continued variability of the Pgt population in Egypt therefore, emphasizing the importance regularly monitoring to timely identify new races, and utilize this information in screening and identification of effective sources of resistance.

Tags:

Wheat Improvement Program combat in context with global cimate change

BGRI 2018 Poster Abstract
Makhdoom Hussain Wheat Research Institute, Faisalabad, Pakistan
Ghulam Mahboob Subhani, Javed Ahmad, Abid Mahmood

Global warming affects the environmental parameters of agro-based countries like temperature increase, melting of glaciers, floods, erratic rains, low temperature, frost and high temperature. As a result agriculture is becoming more vulnerable to global environmental shifts. In case of wheat, erratic or low rains badly affect the wheat crop of rainfed areas of the country along with high temperature at seedling or juvenile stage. Similarly, frost affects the early sown wheat crop in irrigated areas of Punjab. Lesser availability of irrigation water from water reservoirs also reduces the wheat crop productivity. Sudden increase in temperature (>30?C) during the month of March adversely affect the grain filling. High temperature during grain filling stage interferes with the photosynthetic activities of the plant due to enhanced maturity, grain become shriveled and results in low grain yield. The threat of these environmental changes can only be overcome through breeding with specific objectives which is cost effective once obtained.
Hence development of wheat varieties for frost, drought and heat tolerance is the only feasible solution to combat these stresses which is being used at Wheat Program of Ayub Agricultural Research Institute, Faisalabad, Pakistan. New emphasis is also being given to develop frost resistant wheat varieties due to changing scenario of last few years. The institute is actively involved for the development of heat, drought and frost tolerant wheat varieties. During working for tolerance against any of these stresses plant types to be breed are physiologically and morphologically modeled in such a way that they should be capable of tolerating respective stress. In addition to breeding work an extensive research is also being done at Wheat Research Institute, AARI., Faisalabad to investigate best agronomic strategies to make wheat crop best adapted to environmental stress conditions.

Tags:

Molecular and field based characterization of yellow rust resistance in wheat germplasm across locations in Pakistan

BGRI 2018 Poster Abstract
Aamir Iqbal The University of Agriculture, Peshawar, Pakistan
Muhammad Khan, Muhammad Ismail, Sher Nawab, Abdullah Jalal, Muhammad Imtiaz, Sajid Ali

Rust disease response is used to assess the resistance status of breeding lines, which is required to be tested across location and complemented with molecular markers. The current study was designed to characterize yellow rust resistance in 29 introduced advanced CIMMYT wheat lines along with three check varieties across three contrasting wheat growing regions (Peshawar, Mansehra and Lakki-Marwat) during wheat season 2015-16. A high disease pressure was observed across all three locations as favorable cold and wet climatic conditions prevailed during 2015-16. The maximum disease was recorded at Mansehra (up to 90%) followed by Peshawar (up to 50%) and Lakki-Marwat (up to 45%). There was a significant variability amongst the tested wheat lines for yellow rust severity and in yield potential. Among the advanced lines, W-SA-104, W-SA-115 and W-SA-118 had better grain and biological yield. Based on disease and yield parameters, cluster analysis of 29 wheat lines along with three checks grouped wheat lines into four clusters. None of these wheat lines showed resistance at every location (Average coefficient of infection "ACI" = 0). The maximum co-efficient of infection (55) was recorded at Mansehra whereas the minimum (0) was recorded at Peshawar and Lakki-Marwat. Twenty-six of these wheat lines were identified to possess partial resistance to yellow rust (with ACI < 20). Genotyping for the presence of resistance gene markers STS-7 (linked with Yr5), SC-Y15 (linked with Yr17) and Xwmc-44 (linked with Yr29) revealed the highest frequency of Yr17 (90.60%), followed by Yr29 (87.5%) and Yr5 (50%). The three resistant genes together were present only in 15 wheat lines (46.87%). Our results thus revealed the presence of variation in resistance response based on both field testing and molecular markers which could be utilized in wheat breeding to develop better resistance varieties to be exploited at field level.

Tags:

Sources of Resistance to Septoria Tritici Blotch Identified in Ethiopian Durum Wheat

BGRI 2018 Poster Abstract
Carlo Fadda Bioversity International
Bogale Nigir, Cherinet Alem, Yosef G. Kidane, Mario Enrico Pè, Matteo Dell'Acqua

Septoria tritici blotch (STB) is a devastating fungal disease affecting durum and bread wheat cultivation worldwide. The search for resistance sources in untapped genetic resources may speed up breeding for STB resistance. Ethiopian durum wheat landraces represent a valuable source of allelic diversity for several traits, including disease resistance. In this study, we measure STB phenotypes under natural infection on two interconnected populations: i) a diversity panel comprising 318 Ethiopian durum wheat lines, mostly farmer varieties, and ii) a nested association mapping (NAM) population developed from a subset of the diversity panel. Phenology, yield and yield component traits were concurrently measured in the populations. We evaluated the distribution of STB resistance in Ethiopian genetic materials and the relationship existing between STB resistance and agronomic traits. STB resistance sources were found in landraces as well as in NAM lines. The genetic material was genotyped with more than 13 thousand genome-wide SNP markers to describe the linkage disequilibrium and genetic structure existing within the panels. The genotyping information was combined with phenotypes to identify marker-trait associations and loci involved in STB resistance. We identified several loci, each explaining up to 10% of the phenotypic variance for disease resistance. We developed KASP markers tagging the most interesting loci to allow the uptake of our results in a breeding perspective. Our results showed that the Ethiopian untapped allelic diversity bears a great value for studying the molecular basis of STB resistance and for breeding for resistance in local and international material.

Tags:

Pages