Sr56

Displaying 1 - 3 of 3

Breeding durable adult plant resistance to stem rust in spring wheat- progress made in a decade since the launch of Borlaug Global Rust Initiative (BGRI)

A key objective of BGRI is to breed high yielding, stem rust resistant spring wheat germplasm suitable for releases as successful varieties in wheat growing countries of Africa, Middle East, Asia and Latin America. High emphasis was given to select adult plant resistance (APR) to stem rust in achieving this goal that is especially important in East African highlands where various variants belonging to the Ug99 race group and other lineages of stem rust fungus are now known, disease is endemic and present throughout the year on wheat crops. Recent molecular mapping studies show that combinations of partially effective APR gene Sr2 with 3 to 4 additional APR genes such as Sr55, Sr56, Sr57, Sr58 and other undesignated quantitative trait loci confer adequate to high levels of resistance to stem rust. A ‘Mexico-Kenya shuttle breeding scheme’ was initiated in 2008 to select APR to stem rust under high disease pressures at Njoro, Kenya while selecting for resistance to other rusts, yield, agronomic and quality traits in Mexico. This selection scheme, combined with phenotyping of advanced lines for multiple seasons in Kenya has resulted in identifying a small frequency of high yielding lines that possess a high level of resistance with a stable and low stem rust severity performance over seasons/locations under high disease pressures. These near-immune wheat lines are the best candidates for release in East Africa to achieve durable disease control and simultaneously curtail, or reduce, further selection of new virulences. A significantly higher proportion of wheat lines were also developed with moderate levels of resistance that is considered suitable for deployment in wheat growing areas where rust builds up later in the season. The worldwide distribution of the wheat lines derived from Mexico-Kenya shuttle breeding initiated in 2012 through the international yield trials and nurseries from CIMMYT. Potential releases and cultivation of these lines in different countries together with a reduction in area sown to susceptible varieties are expected to reduce the threat from stem rust.

Primary Author: 
Ravi Singh
Primary Author Institution: 
CIMMYT
Resistance Gene Tags: 
Co-authors: 
J.Huerta-Espino, S. Bhavani, P. Njau, E. Autrique, V. Govindan, S. Mondal, A.K. Joshi, B. Abeyo, A. Badebo, B.R. Basnet, J. Rutkoski,, C. Lan and Y. Hao
Poster or Plenary?: 
Plenary
BGRI Year: 
2015
Abstract Tags: 

Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar Arina

The identification of new sources of adult plant resistance (APR) and effective combinations of major and minor genes is well appreciated in breeding for durable rust resistance in wheat. A QTL, QSr.sun-5BL, contributed by winter wheat cultivar Arina providing 12–15 % reduction in stem rust severity, was reported in an Arina/Forno recombinant inbred line (RIL) population. Following the demonstration of monogenic segregation for APR in the Arina/Yitpi RIL population, the resistance locus was formally named Sr56. Saturation mapping of the Sr56 region using STS (from EST and DArT clones), SNP (9 K) and SSR markers from wheat chromosome survey sequences that were ordered based on synteny with Brachypodium distachyon genes in chromosome 1 resulted in the flanking of Sr56 by sun209 (SSR) and sun320 (STS) at 2.6 and 1.2 cM on the proximal and distal ends, respectively. Investigation of conservation of gene order between the Sr56 region in wheat and B. distachyon showed that the syntenic region defined by SSR marker interval sun209-sun215 corresponded to approximately 192 kb in B. distachyon, which contains five predicted genes. Conservation of gene order for the Sr56 region between wheat and Brachypodium, except for two inversions, provides a starting point for future map-based cloning of Sr56. The Arina/Forno RILs carrying both Sr56 and Sr57 exhibited low disease severity compared to those RILs carrying these genes singly. Markers linked with Sr56 would be useful for marker-assisted pyramiding of this gene with other major and APR genes for which closely linked markers are available.

Urmil Bansal, Harbans Bariana, Debbie Wong, Mandeep Randhawa, Thomas Wicker, Matthew Hayden, Beat Keller
Theoretical and Applied Genetics
Year: 
2014
Expert pick: 
False

Genetic mapping of seedling and adult plant stem rust resistance in two European winter wheat cultivars

Abstract A recombinant inbred line (RIL) population derived from the cross Arina/Forno was field tested for 2 years against Puccinia graminis f. sp. tritici under artificially created epidemic conditions. Both parents showed intermediate adult plant stem rust responses and the RIL population showed continuous variation for this trait. Composite interval mapping identified genomic regions controlling low stem rust response on chromosomes 5B and 7D consistently across all experiments. These genomic regions were named QSr.Sun-5BL and QSr.Sun-7DS and explained on an average 12% and 26% of the phenotypic variation in adult plant stem rust response, respectively. QSr.Sun-5BL mapped close to Xglk0354 and was contributed by Arina. The Lr34-linked markers csLV34 and swm10 were closely associated with QSr.Sun-7DS suggesting the involvement of Lr34 in controlling adult plant stem rust response of cultivar Forno. Additional minor and inconsistent QTLs explaining variation in adult plant stem rust response were identified on chromosome arms 1AS and 7BL. The QTL located on chromosome 7BL corresponded to the stem rust resistance gene Sr17 carried by cultivar Forno. A seedling stem rust resistance gene carried by Arina, SrAn1, was ineffective under field conditions and was mapped on the long arm of chromosome 2A. Genotypes carrying combinations of QSr.Sun-5BL and QSr.Sun-7DS based on positive alleles of the respective closest marker loci Xglk0354 and XcsLV34 or Xswm10 exhibited a lower response than either parent indicating an additive effect of these genes. Transfer of these genes into cultivars carrying Sr2 would provide a more effective and durable resistance against the stem rust pathogen. Markers csLV34 and/or swm10 could be used in marker assisted selection of QSr.Sun-7DS in breeding programs.

Bansal,U.; Bossolini,E.; Miah,H.; Keller,B.; Park,R.; Bariana,H.
Euphytica
Year: 
2008
Volume: 
164
Issue: 
3.0
Start Page: 
821.0
Other Page(s): 
828.0
Expert pick: 
False
Subscribe to Sr56