Sr55

Displaying 1 - 1 of 1

Breeding durable adult plant resistance to stem rust in spring wheat- progress made in a decade since the launch of Borlaug Global Rust Initiative (BGRI)

A key objective of BGRI is to breed high yielding, stem rust resistant spring wheat germplasm suitable for releases as successful varieties in wheat growing countries of Africa, Middle East, Asia and Latin America. High emphasis was given to select adult plant resistance (APR) to stem rust in achieving this goal that is especially important in East African highlands where various variants belonging to the Ug99 race group and other lineages of stem rust fungus are now known, disease is endemic and present throughout the year on wheat crops. Recent molecular mapping studies show that combinations of partially effective APR gene Sr2 with 3 to 4 additional APR genes such as Sr55, Sr56, Sr57, Sr58 and other undesignated quantitative trait loci confer adequate to high levels of resistance to stem rust. A ‘Mexico-Kenya shuttle breeding scheme’ was initiated in 2008 to select APR to stem rust under high disease pressures at Njoro, Kenya while selecting for resistance to other rusts, yield, agronomic and quality traits in Mexico. This selection scheme, combined with phenotyping of advanced lines for multiple seasons in Kenya has resulted in identifying a small frequency of high yielding lines that possess a high level of resistance with a stable and low stem rust severity performance over seasons/locations under high disease pressures. These near-immune wheat lines are the best candidates for release in East Africa to achieve durable disease control and simultaneously curtail, or reduce, further selection of new virulences. A significantly higher proportion of wheat lines were also developed with moderate levels of resistance that is considered suitable for deployment in wheat growing areas where rust builds up later in the season. The worldwide distribution of the wheat lines derived from Mexico-Kenya shuttle breeding initiated in 2012 through the international yield trials and nurseries from CIMMYT. Potential releases and cultivation of these lines in different countries together with a reduction in area sown to susceptible varieties are expected to reduce the threat from stem rust.

Primary Author: 
Ravi Singh
Primary Author Institution: 
CIMMYT
Resistance Gene Tags: 
Co-authors: 
J.Huerta-Espino, S. Bhavani, P. Njau, E. Autrique, V. Govindan, S. Mondal, A.K. Joshi, B. Abeyo, A. Badebo, B.R. Basnet, J. Rutkoski,, C. Lan and Y. Hao
Poster or Plenary?: 
Plenary
BGRI Year: 
2015
Abstract Tags: 
Subscribe to Sr55