Sr55

Displaying 1 - 2 of 2

Rauf
University of Minnesota
Keywords: 
Resistance Gene Tags: 
Co-authors: 
Caixia Lan, Ravi Singh, Matthew Rouse, Muhammad Imtiaz, James Anderson
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Yahya

The rapid appearance of new races of rust pathogens with virulence for the major seedling resistance genes in wheat has intensified the focus to discover adult plant resistance (APR) genes in wheat and utilize them in breeding programs for sustainable wheat production. The experimental breeding line 'Copio' developed by the International Maize and Wheat Improvement Centre (CIMMYT) in Mexico has exhibited high levels of APR to all three rusts including the African stem rust Ug99 race group. To dissect the mechanism of APR in Copio it was crossed with APAV#1, which is susceptible to all three rusts and a population of 176 F4:F5 recombinant inbred lines (RILs) was developed at CIMMYT. Both parental lines were found to be susceptible (IT >3) at the seedling stage to races TTKSK and TKTTF, which ensures the field data from Africa will be applicable for APR mapping. Seedling tests were also conducted on the RIL population using the predominant Pakistani race RRTTF, and Chi-squared tests indicated segregation of two stem rust seedling genes (?2 test P value of 0.00002). Both parents were also tested for the known APR genes Lr34/Yr18/Sr57, Lr46/Yr29/Sr58, Lr67/Yr46/Sr55 and Sr2/Yr30 using molecular markers and results indicate that APAV#1 does not carry any known APR genes, while Copio might have Lr46 and Sr2. This population was tested in four field environments (US, Pakistan, Mexico, and Kenya) for leaf, stem and yellow rusts during 2015-16 and 2016-17. Disease severity distributions of all three rusts for the RILs across all environments were continuous, suggestive of quantitative and polygenic resistance.
We are using genotyping by sequencing (GBS) as a genotyping platform and anticipate having preliminary mapping results available by spring 2018.

Ravi Singh
CIMMYT
Resistance Gene Tags: 
Co-authors: 
J.Huerta-Espino, S. Bhavani, P. Njau, E. Autrique, V. Govindan, S. Mondal, A.K. Joshi, B. Abeyo, A. Badebo, B.R. Basnet, J. Rutkoski,, C. Lan and Y. Hao
Poster or Plenary?: 
Plenary
BGRI Year: 
2015
Abstract Tags: 

A key objective of BGRI is to breed high yielding, stem rust resistant spring wheat germplasm suitable for releases as successful varieties in wheat growing countries of Africa, Middle East, Asia and Latin America. High emphasis was given to select adult plant resistance (APR) to stem rust in achieving this goal that is especially important in East African highlands where various variants belonging to the Ug99 race group and other lineages of stem rust fungus are now known, disease is endemic and present throughout the year on wheat crops. Recent molecular mapping studies show that combinations of partially effective APR gene Sr2 with 3 to 4 additional APR genes such as Sr55, Sr56, Sr57, Sr58 and other undesignated quantitative trait loci confer adequate to high levels of resistance to stem rust. A ‘Mexico-Kenya shuttle breeding scheme’ was initiated in 2008 to select APR to stem rust under high disease pressures at Njoro, Kenya while selecting for resistance to other rusts, yield, agronomic and quality traits in Mexico. This selection scheme, combined with phenotyping of advanced lines for multiple seasons in Kenya has resulted in identifying a small frequency of high yielding lines that possess a high level of resistance with a stable and low stem rust severity performance over seasons/locations under high disease pressures. These near-immune wheat lines are the best candidates for release in East Africa to achieve durable disease control and simultaneously curtail, or reduce, further selection of new virulences. A significantly higher proportion of wheat lines were also developed with moderate levels of resistance that is considered suitable for deployment in wheat growing areas where rust builds up later in the season. The worldwide distribution of the wheat lines derived from Mexico-Kenya shuttle breeding initiated in 2012 through the international yield trials and nurseries from CIMMYT. Potential releases and cultivation of these lines in different countries together with a reduction in area sown to susceptible varieties are expected to reduce the threat from stem rust.

Subscribe to Sr55