Sr39

Displaying 1 - 6 of 6

Baraibar
Instituto Nacional de Investigaci?n Agropecuaria (INIA) La Estanzuela
Keywords: 
Resistance Gene Tags: 
Co-authors: 
Paula Silva, Clara Pritsch, Miguel Raffo, Silvia Pereyra, Silvia German
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Silvina

Wheat stem rust (SR), caused by Puccinia graminis f. sp. tritici, (Pgt) is considered one of the most destructive diseases of the wheat crop. As Sr24 and Sr31 are the most widely used resistance genes in the Southern Cone of America, wheat crops in this region is under threat of SR outbreaks posed by the potential migration of virulent Pgt Ug99-lineage races (Ug99+). Efforts have to be made to develop adapted lines resistant to Ug99+. Genes Sr26, Sr32 and Sr39 are effective to both Ug99+ and local races of the pathogen. This work is aimed to pyramid two and three of the resistance genes in two locally adapted wheat cultivars (G?nesis 2375 and G?nesis 6.87). Donor lines of Sr26, Sr32 and Sr39 (developed by I. Dundas, University of Adelaide, Australia) and molecular markers Sr26#43, csSr32#1 and Sr39#22r (developed by R. Mago et al., University of Adelaide) were used. Lines with two-gene combinations were developed in two steps. First, tree-way crosses were made by crossing heterozygous F1 plants (derived from crossings donor lines) to either one of the two adapted wheat cultivars. Subsequently, tree-way F1 plants were genotyped and only those with two-gene combinations were backcrossed (BC) twice to the adapted cultivars. Among three-way F1 plants, two-genes combinations were confirmed for Sr26+Sr32 (8 out of 31), Sr26+Sr39 (2 of 115) and Sr32+Sr39 (26 out of 103). In the BC1F1 generation, Sr26+Sr32, Sr26+Sr39 and Sr32+Sr39 combinations corresponded with 9, 9 and 45 out of 99, 27 and 241 plants, respectively. In 2017, 1345 BC2F1 plants are being grown to obtain BC2F2. We plan to intercross plants with two-gene combinations to obtain lines with the three genes which will be used as sources of resistance to develop cultivars with presumably longer lasting resistance to wheat SR.

Tight repulsion linkage between Sr36 and Sr39 was revealed by genetic, cytogenetic and molecular analyses

Stem rust resistance genes Sr39 and Sr36 were transferred from Aegilops speltoides and Triticum timopheevii, respectively, to chromosome 2B of wheat. Genetic stocks RL6082 and RWG1 carrying Sr39 on a large and a shortened Ae. speltoides segments, respectively, and the Sr36-carrying Australian wheat cultivar Cook were used in this study. This investigation was planned to determine the genetic relationship between these genes. Stem rust tests on F3 populations derived from RL6082/Cook and RWG1/Cook crosses showed tight repulsion linkage between Sr39 and Sr36. The genomic in situ hybridization analysis of heterozygous F3 family from the RWG1/Cook population showed that the translocated segments do not overlap. Meiotic analysis on the F1 plant from RWG1/Cook showed two univalents at the metaphase and anaphase stages in a majority of the cells indicating absence of pairing. Since meiotic pairing has been reported to initiate at the telomere, pairing and recombination may be inhibited due to very little wheat chromatin in the distal end of the chromosome arm 2BS in RWG1. The Sr39-carrying large Ae. speltoides segment transmitted preferentially in the RL6082/Cook F3 population, whereas the Sr36-carrying T. timopheevii segment over-transmitted in the RWG1/Cook cross. Genotyping with the co-dominant Sr39- and Sr36-linked markers rwgs28 and stm773-2, respectively, matched the phenotypic classification of F3 families. The RWG1 allele amplified by rwgs28 was diagnostic for the shortened Ae. speltoides segment and alternate alleles were amplified in 29 Australian cultivars. Marker rwgs28 will be useful in marker-assisted pyramiding of Sr39 with other genes.

Bosco Chemaye, kUrmil K. Bansal, Naeela Qureshi, Peng Zhang, William W. Wagoire, Harbans S. Bariana
Theoretical and Applied Genetics
Year: 
2017
Volume: 
130
Issue: 
3
Start Page: 
587
Other Page(s): 
595
Expert pick: 
False
Month Posted: 
Chemayek
The University of Sydney, Plant Breeding Institute, Australia
Primary Author Email: 
bosco.chemayek@sydney.edu.au
Resistance Gene Tags: 

Stem rust resistance genes Sr39 (RL6082) and Sr36 (Cook) were transferred from Aegilops speltoides and Triticum timopheevi to chromosome 2B of wheat. Both genes are located on large translocated segments. Genotypes carrying Sr36 and Sr39 produce infection types (ITs) 0; and 2, respectively, against avirulent pathotypes. This investigation was planned to study the genetic relationship between these genes with the aim of combining them in a single genotype. Seedling tests on RL6082/Cook F3 lines showed complete repulsion linkage [25 Sr39Sr39sr36sr36 (IT2-) : 53 Sr39sr39Sr36sr36 (IT2-, IT0;) : 13 sr39sr39Sr36Sr36 (IT 0;)], and preferential transmission of the Ae. speltoides segment over the T. timopheevi segment was evident from the segregation ratio. The Sr39-carrying translocation was shortened by Niu et al. (2011; Genetics 187: 1011-1021) and the genetic stock carrying the shortest segment was named RWG1. Based on the reported location of Sr39 in the smaller alien segment in RWG1, we predicted that it should recombine with Sr36. F3 lines derived RWG1/Cook were phenotyped for stem rust response at the two-leaf stage and again complete repulsion linkage between Sr39 and Sr36 was observed [23 Sr39Sr39sr36sr36 (IT2-) : 78 Sr39sr39Sr36sr36 (IT0;, IT2-) : 68 sr39sr39Sr36Sr36 (IT 0;)]. In contrast to the cross involving the large Sr39 translocation, preferential transmission of the T. timopheevi segment was observed. These results indicated that a genetic determinant of meiotic drive had been deleted in the shortened Ae. speltoides segment. Genotyping with the co-dominant STS marker rwgs28 matched the phenotypic classification of F3 families. Marker rwgs28 was diagnostic for the Ae. speltoides segment, but the rwgs28 allele amplified in Cook was not T. timopheevi-specific.

Introgression and characterization of a goatgrass gene for a high level of resistance to Ug99 stem rust in tetraploid wheat

The transfer of alien genes to crop plants using chromosome engineering has been attempted infrequently in tetraploid durum wheat (Triticum turgidum L. subsp. durum). Here, we report a highly efficient approach for the transfer of two genes conferring resistance to stem rust race Pgt-TTKSK (Ug99) from goatgrass (Aegilops speltoides) to tetraploid wheat. The durum line DAS15, carrying the stem rust resistance gene Sr47 derived from Ae. speltoides, was crossed, and backcrossed, to durum 5D(5B) aneuploids to induce homeologous pairing. After a final cross to ‘Rusty’ durum, allosyndetic recombinants were recovered. The Ae. speltoides chromosomal segment carrying Sr47 was found to have two stem rust resistance genes. One gene conditioning an infection type (IT) 2 was located in the same chromosomal region of 2BS as Sr39 and was assigned the temporary gene symbol SrAes7t. Based on ITs observed on a diverse set of rust races, SrAes7t may be the same as Sr39. The second gene conditioned an IT 0; and was located on chromosome arm 2BL. This gene retained the symbol Sr47 because it had a different IT and map location from other stem rust resistance genes derived from Ae. speltoides. Allosyndetic recombinant lines carrying each gene on minimal alien chromosomal segments were identified as were molecular markers distinguishing each alien segment. This study demonstrated that chromosome engineering of Ae. speltoides segments is feasible in tetraploid wheat. The Sr47 gene confers high-level and broad spectrum resistance to stem rust and should be very useful in efforts to control TTKSK.

Daryl L. Klindworth, Zhixia Niu, Shiaoman Chao, Timothy L. Friesen, Yue Jin, Justin D. Faris, Xiwen Cai, Steven S. Xu
G3
Year: 
2012
Volume: 
2
Issue: 
6
Start Page: 
665
Other Page(s): 
673
Expert pick: 
False

Targeted Introgression of a Wheat Stem Rust Resistance Gene by DNA Marker-assisted Chromosome Engineering

Chromosome engineering is a useful strategy for transfer of alien genes from wild relatives into modern crops. However, this strategy has not been extensively used for alien gene introgression in most crops due to low efficiency of conventional cytogenetic techniques. Here, we report an improved scheme of chromosome engineering for efficient elimination of a large amount of goatgrass (Aegilops speltoides) chromatin surrounding Sr39, a gene that provides resistance to multiple stem rust races, including Ug99 (TTKSK) in wheat. The wheat ph1b mutation, which promotes meiotic pairing between homoeologous chromosomes, was employed to induce recombination between wheat chromosome 2B and goatgrass 2S chromatin using a backcross scheme favorable for inducing and detecting the homoeologous recombinants with small goatgrass chromosome segments. Forty recombinants with Sr39 with reduced surrounding goatgrass chromatin were quickly identified from 1,048 backcross progenies through disease screening and molecular marker analysis. Four of the recombinants carrying Sr39 with a minimal amount of goatgrass chromatin (2.87-9.15% of the translocated chromosomes) were verified using genomic in situ hybridization. Approximately 97% of the goatgrass chromatin was eliminated in one of the recombinants, in which a tiny goatgrass chromosome segment containing Sr39 was retained in the wheat genome. Localization of the goatgrass chromatin in the recombinants led to rapid development of three molecular markers tightly linked to Sr39. The new wheat lines and markers provide useful resources for the ongoing global effort to combat Ug99. This study has demonstrated great potential of chromosome engineering in genome manipulation for plant improvement.

Niu,Zhixia; Klindworth,Daryl L.; Friesen,Timothy L.; Chao,Shiaoman; Jin,Yue; Cai,Xiwen; Xu,Steven S.
Genetics
Year: 
2011
Volume: 
187
Issue: 
4
Start Page: 
1011
Other Page(s): 
1021
Expert pick: 
False

Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection

The use of major resistance genes is a cost-effective strategy for preventing stem rust epidemics in wheat crops. The stem rust resistance gene Sr39 provides resistance to all currently known pathotypes of Puccinia graminis f. sp. tritici (Pgt) including Ug99 (TTKSK) and was introgressed together with leaf rust resistance gene Lr35 conferring adult plant resistance to P. triticina (Pt), into wheat from Aegilops speltoides. It has not been used extensively in wheat breeding because of the presumed but as yet undocumented negative agronomic effects associated with Ae. speltoides chromatin. This investigation reports the production of a set of recombinants with shortened Ae. speltoides segments through induction of homoeologous recombination between the wheat and the Ae. speltoides chromosome. Simple PCR-based DNA markers were developed for resistant and susceptible genotypes (Sr39#22r and Sr39#50s) and validated across a set of recombinant lines and wheat cultivars. These markers will facilitate the pyramiding of ameliorated sources of Sr39 with other stem rust resistance genes that are effective against the Pgt pathotype TTKSK and its variants.

Mago,R.; Zhang,P.; Bariana,H. S.; Verlin,D. C.; Bansal,U. K.; Ellis,J. G.; Dundas,I. S.
Theoretical and Applied Genetics
Year: 
2009
Volume: 
119
Issue: 
Start Page: 
1441.0
Other Page(s): 
1450.0
Subscribe to Sr39