stripe rust

Displaying 1 - 10 of 60

Shahin
Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Egypt.
Co-authors: 
Wasif Youssif, Mohamed Hasan
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Atef

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, [Pst] is a widespread and damaging disease of wheat (Triticum aestivum L.), causing significant losses in yield and quality. During the 2015, eight stripe rust physiological races were identified in greenhouse tests i.e. 0E0, 6E4, 70E20, 128E28, 134E244, 143E245, 250E174, and 450E214. Race 0E0 was the most common and avirulent race, and races 143E245, and 450E214 had high virulence on most of tested Yr resistance gene wheat lines. In the same season, an unusual stripe rust infection occurred in spring wheat at Sakha region in Egypt. Some of the most important commercial cultivars such as (Misr 2, Giza 168 and Sakha 61), known as resistant to the previously characterized races of Pst in Egypt have become susceptible under field conditions. Infections of stripe rust was observed on some wheat lines with Yr genes previously known to be resistant, such as Yr1, Yr17 and Yr32, in a yellow-rust trap nursery at Sakha (30.601400? N, 31.510383? E), northern Egypt. Independent race analysis of collected samples from four governorates i.e. Kafrelsheikh, Al-Sharqia, Dakahleia and Damietta at Sakha Agricultural Research Station in Kafrelsheikh confirmed the detection of a new Pst race in Egypt. Aggressive races with virulence to Yr27 were detected on differentials with Yr27 (Yr27/6*Avocet S), and (Ciano 97) during the 2012 in Egypt. In addition, the Warrior race (virulent on: Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, Yr32, and YrSp) was observed in the 2015 crop season, which indicated continued changes in the Pst the population. In Europe, the Warrior race first identified in 2011 in the United Kingdom, has caused significant change in yellow rust susceptibility of several varieties of both wheat and triticale. In a conclusion, some of wheat cultivars, known to be resistant, were shifted to susceptible due to these new races.

Tehseen
Department of Field Crops, Ege University, Izmir, Turkey
Co-authors: 
Kumarse Nazari, Mehran Patpour, Davinder Singh, Aladdin Hamwieh
Poster or Plenary?: 
Poster
BGRI Year: 
2018
geographic_area: 
Primary Author First Name: 
Muhammad Massub

Rust diseases in wheat are the major threat to wheat production and yield gains. The breakdown in resistance of certain major genes and new emerging aggressive races of rusts are causing serious concerns in all main wheat growing areas of the world. Therefore, it is the need of the hour to search for new sources of resistance genes or QTL's for effective utilization in future breeding programs. In total 100 wheat genotypes were evaluated for seedling and adult-plant resistance to stem rust races TKTTF and TTKSK at Tel Hadya-Syria, and Njoro-Kenya, and Kelardasht-Iran. Evaluation to Yr27 virulent stripe rust race was carried out at Tel Hadya and Terbol-Lebanon research stations. In this study we used genome wide association studies (GWAS) to identify markers or QTLs linked to stem rust and stripe rust races using Diversity Arrays Technology (DArT?) in selected 35 Iranian wheat genotypes. The association of markers and phenotypes was carried out using a unified mixed-model approach (MLM) as implemented in the genome association and prediction integrated tool (GAPIT). Out of 3,072 markers, 986 were polymorphic and used for marker trait associations. A total of 44 DArT markers were identified to be significantly (p<=0.01) associated with studied traits in 16 genomic regions 1A, 1B, 2A, 4A, 6A, 7A, 1B.1R, 2B, 3B, 4B, 5B, 5B.7B, 6B, 7D and an unknown region. Among associated markers, 34 were linked to stem and nine to stripe rust. They were found on 16 genomic regions on chromosome arms 1A, 1B, 2A, 4A, 6A, 7A, 1B.1R, 2B, 3B, 4B, 5B, 5B.7B, 6B, 7D and an unknown region. Associated markers explained phenotypic variation ranging from 21 to 65%. In addition to validation of previously identified genes, this study revealed new QTL's linked to stem and stripe rust which will assist breeders to develop new resistant varieties.

Bentounsi
University Mentouri of Constantine, Algeria
Keywords: 
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Amira

Wheat is the world's most widely grown food crop. New races of pathogens frequently overcome current resistant varieties. To address this issue Algeria has strategies for immediate action, medium term protection and long-term research efforts to develop new resistant wheat varieties. Yellow rust is a very important disease of wheat in Algeria where 60% of the wheat crop is grown under cooler high elevation climate conditions (2?C ? 15?C). Crop losses reached 80% during the 2004/2005 epidemics. Strategies adopted to reduce the risk of wheat rust are ongoing yearly surveillance, awareness, and early warning systems to farmers; and breeding and developing new varieties with high yield potential and durable resistance. Several highly resistant varieties (Tiddis, Boumerzoug, Massine, Akhamokh and Yacine) were selected and promoted following seed multiplication and commercial release. They are also widely used in crosses to improve local varieties. The newly released varieties are being distributed to farmers that grow susceptible varieties. This gene deployment will provide a natural barrier between eastern to western Algeria to intercept the major direction of air flow. Fungicide control is now routinely applied soon after rust detection or even preemptively. The level of awareness for wheat rusts across Algeria is now very high. Training among farmers for visual detection is widely promoted by plant protection and extension services. These strategies have been very effective in mitigating the threat of wheat stripe rust such that losses have not exceeded 10% over the last five years.

Isehtu
Ethiopian Institute of Agricultural Research (EIAR)
Poster or Plenary?: 
Poster
BGRI Year: 
2018
geographic_area: 
Primary Author First Name: 
Yewubdar

Stripe rust caused by Puccinia striiformis f.sp.tritici, is one of the major diseases of wheat in the world. Experiments were carried out at two sites in Ethiopia (Kulumsa and Meraro) during the 2015 cropping season to evaluate the response of 198 elite bread wheat genotypes and two checks to the prevailing races of stripe rust at adult plant and seedling stage. The genetic profile of these genotypes was assessed using 13006 SNP markers and an association mapping was explored to determine marker?trait association. About 72.5% and 42.5% of the lines exhibited resistance at Kulumsa and Meraro, respectively. Out of 198 genotypes tested in the greenhouse, 31% exhibited common resistance for Kubsa and mixed stripe rust isolate. Only 8966 of the SNPs were polymorphic, only these were used for association mapping analysis. These markers spanned an average density of 3.47 cM per marker, with the poorest density on the D genome. Almost half of these markers were on known chromosomes, but had no position on the consensus map of bread wheat. Analysis of population structure revealed the existence of three clusters and the estimated genomic wide Linkage Disequilibrium (LD) decay in this study ranged from 0 to 50 cM. 53 SNPs in ten genomic regions located on wheat chromosome 1AL, 2AL, 2BL, 2DL, 3BL, 4BL, 4DL, 5AS, 7AL and 7BL were identified. Thirty nine SNP markers in five genomic regions at Kulumsa and 14 SNP markers in six genomic regions at Meraro explained more than 25.5% and 35.1% of phenotypic variability respectively. For seedling stage, 21 markers in ten genomic regions located on wheat chromosomes 1B, 2A, 2B, 3A, 3B, 4B, 4D, 5A, 6B and 7B were associated with resistant. These loci may be useful for choosing parents and incorporating new resistance genes into locally adapted cultivars.

Zhao
College of Plant Protection, Northwest A&F University, China
Co-authors: 
Yuanyuan Zhao, Shuxia Zuo, Dan Zheng, Lili Huang, Zhengshen Kang
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
geographic_area: 
Primary Author First Name: 
Jie

Wheat stripe rust, caused by basidiomycete fungus Puccinia striiformis f. sp. tritici (Pst), is a damaging disease worldwide. The recent discovery demonstrated the fungus depends on living wheat and aecial hosts, mainly barberry (Berberis) species, to complete its life cycle. In China, we determined that, under natural conditions, the sexual cycle of Pst occurs based on collections of Pst isolates from the diseased barberry in the past three years. However, no direct evidence to support whether barberry plays a role in spreading inoculums to wheat field to cause stripe rust was detected. In the present study, we recovered 103 Pst samples from natural-infected B. shensiana in the western Shaanxi in spring 2016, and also collected 107 Pst isolates from neighboring wheat fields. Phenotype and genotype of the two Pst populations were tested using a set of Chinese differential hosts for Pst and SSR markers, respectively. The phenotype tests showed that 57 race types produced from the barberry-derived Pst populations, consisting of 58 known races, such as CYR 34, CYR32, G22-14, and Su11-14-3, and 45 new races. Many of the two Pst populations shared the same race types. The genotype tests indicated the barberry-derived Pst population produced a rich genotype, obviously higher than the wheat-derived Pst populations. The seven same genotypes were found on 40 isolates of the former and 26 of the latter. Our results provide evidence to support that sexual cycle of Pst occurs regularly in nature in China and that barberry provides inoculums to neighboring wheat fields, triggering stripe rust infections in the spring. This could be a reason why the Chinese Pst populations represent extreme genetic diversity.

Zeng
Northwest A&F University
Keywords: 
Resistance Gene Tags: 
Co-authors: 
Dejun Han, Jia Guo, Manuel Spannagl, Jianhui Wu, Aizhong Cao, Peidu Chen, IWGSC, Lili Huang, Jun Guo, Klaus Mayer, Zhensheng, Kang
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
Primary Author First Name: 
Qingdong

Wheat cultivation in many regions faces threats by devastating fungal infections. However, wheat cultivar 92R137 shows resistance to Puccinia striiformis infection. To isolate the stripe rust resistance gene Yr26, an integrated transcriptomic and comparative genomics approach was undertaken. Near-isogenic lines of wheat (carrying Yr26 or not) infected with two Puccinia striiformis f. sp. tritici (Pst) (Virulence or avirulence to Yr26) were analysed in a dual detailed time series RNA-seq study. The emerging IWGSC refseq v1.0 genome assembly sequence serves as a valuable template and was also used for comparative genomics studies of the gene candidate region with the genome sequences of close relatives and wheat progenitors. Using bulked segregant analysis (BSA) to identify polymorphic SNPs between parent and resistant DNA (R-bulk) and susceptible DNA (S-bulk), flanking markers for Yr26 were identified. These two markers were mapped to the Chinese spring reference genome sequence, spanning a region of about 250 kb. The synteny analysis of this candidate region in CS chr1B with chr1A, chr1D, Wild Emmer Wheat (Td_chr1A and Td_chr1B) and Barley (chr1H) identified three candidate Yr26 genes. To detect gene candidates a dual time series RNA-seq analysis was performed. Genes differently expressed between rust susceptible (NIL-S) host lines and rust resistant (NIL-R) lines, carrying the Yr26 candidate gene were analysed. Both lines were inoculated with Pst carrying different avirulence factors (Pst-CYR32 and Pst-V26), compatible or incompatible with the corresponding wheat lines. Differential gene expression analysis (DEG) between compatible and incompatible interaction revealed DEGs in the wheat genome and in the Pst genome. From a network analysis of both wheat and Pst genes, we inferred connected co-expressed modules. Resulting modules showed particular enrichments for disease resistance, defense response to fungus and cell wall components.

Wamalwa
Egerton University Njoro, Kenya
Keywords: 
Co-authors: 
Ruth Wanyera, James Owuoche, Julian Rodriguez, Annemarie Justesen, Lesley Lesley, Sridhar Bhavani, Cristobal Uauy, Mogens Hovmøller
Poster or Plenary?: 
Poster
BGRI Year: 
2018
geographic_area: 
Primary Author First Name: 
Mercy

Emergence of new virulent races of Puccinia striiformis f. sp. tritici (Pst) to stripe (yellow) rust resistance genes in wheat (Triticum aestivum L.) has historically resulted in severe yield losses worldwide. We conducted a study to characterize the virulence profiles of Pst races prevalent in Kenya from historic (1970-1992) and recent collections (2009-2014). Pst isolates collected during surveys in Kenya were characterized at the Global Rust Research Centre (GRRC), Denmark. Yellow rust differential sets (wheat lines with known Yr resistance genes), and strain-specific sequence-characterized-amplified-region (SCAR) markers were used to group the Pst isolates as Pst1 or Pst2. Virulence to Yr1, Yr2, Yr3,Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, and the seedling resistance in AvocetS were detected. A total of 12 virulence profiles /races were detected in isolates obtained during 1970 to 1992, while six races were detected from samples collected between 2009 to 2014. In both periods, races with virulence profiles Yr2, Yr6, Yr7, Yr8, Yr25, Yr27, Avs and Yr2, Yr6, Yr7, Yr8, Yr17, Yr25, AvS were common. The SCAR results revealed that both Pst1 and Pst2 strains were present in the Pst isolates tested, Pst1 even in isolates from the 1970s. Additional isolates were also identified with neither Pst1 nor Pst2 profiles. From our findings, race analysis is key to understand the race diversity and pre-breeding efforts for effective resistance gene deployment.

Nazir
The University of Agriculture, Peshawar, Pakistan
Keywords: 
Co-authors: 
Muhammad,Khan, Sangay, Tshewang, Sarala, Lohani, David, Hodson, Muhammad, Imtiaz, Sajid, Ali, , , , , , , , , , , , , , , , , ,
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Sidra

The Himalayan region of Pakistan and China has been shown to be the centre of diversity of Puccinia striiformis, however, little is known about the Eastern part of the Himalayas. We studied the genetic structure of P. striiformis from Nepal and Bhutan in comparison with Pakistan through microsatellite genotyping of 66 isolates from Nepal (35 isolates) and Bhutan (31 isolates) collected during 2015 and 2016. Genetic analyses revealed a recombinant and highly diverse population structure in Bhutan and Nepal. A high level of genotypic diversity was observed for both Bhutan (0.92) and Nepal (0.67) with the detection of 53 distinct multilocus genotypes (MLGs) in the overall population; 28 for Bhutan and 27 for Nepal. Mean number of alleles per locus was higher in Bhutan (3.33) than Nepal (3.11), while the gene diversity was higher in Nepal (0.4279) than Bhutan (0.3552). A non-significant difference between the observed and the expected heterozygosity in both populations further confirmed the recombinant structure. Analyses of population subdivision revealed a low divergence between Nepal and Bhutan (FST=0.1009), along with the detection of certain common MLGs in both populations. The overall population was clearly divided into six genetic groups, with no geographical structure, confirmed by the distribution of multilocus genotypes over two countries, suggesting a potential role of migration. Comparison with the Pakistani P. striiformis population suggested a high genotypic diversity in Nepal (0.933) and Bhutan (0.959), though lower than the previously reported from Himalayan region of Pakistan (Mansehra; 0.997). The overall high diversity and recombination signature suggested the potential role of recombination in the eastern Himalayan region (Nepal and Bhutan), which needs to be considered during host resistance deployment and in the context of aerial dispersal of the pathogen.

Randhawa
Agriculture and Agri-Food Canada, Lethbridge, Alberta
Co-authors: 
Gurcharn Brar, Randy Kutcher, Raman Dhariwal
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
geographic_area: 
Primary Author First Name: 
Harpinder

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat in western Canada. Although stripe rust was an issue in southern Alberta for many years, it became important in other parts of the country after a dramatic population shift in 2000, resulting from an invasive race. Sporadic epidemics of the disease are common and cause considerable loss, due to which, an intermediate level of resistance to stripe rust was required for new varietal registrations beginning 2017. Virulence surveys are of key importance in germplasm and cultivar development as they provide breeders and pathologists the information needed to better understand host-pathogen interactions and the effectiveness of Yr genes. Virulence characterization revealed a wide range of virulence phenotypes exhibited by 33 Pst races in western Canada, although only 2-3 races were predominant. The expression of Yr genes may differ between controlled conditions and natural field conditions as previously reported. Thus, stripe rust differentials and wheat cultivars grown in western Canada are also screened at multiple locations in every year. At present, all stage resistance genes Yr1, Yr4, Yr5, Yr15, Yr76, and YrSP are effective against the predominant Pst races, whereas at the adult stage under field conditions, Yr2, Yr17, Yr28, or those carried by Yamhill are also effective. Seedling resistance genes Yr7, Yr10, Yr17, or Yr27 were the most common in Canadian wheat cultivars. Of these, only Yr17 is effective under field conditions. Adult plant resistance genes Yr18 and Yr29 are carried by many cultivars, but are not effective under high disease pressure. The effectiveness of each resistance gene may vary between the eastern and western prairies of western Canada due to differences in virulence. Regular virulence surveys using contemporary and regional cultivars facilitate the development of rust resistant cultivars.

Nazari
Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), ICARDA, Menemen, Izmir, Turkey
Keywords: 
Co-authors: 
Muhammad Massub Tehseen, Ezgi Kurtulus, Maha Al Ahmed, Ahmed Amri, Mariana Yazbek, Ali Shehadeh
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
Primary Author First Name: 
Kumarse

In 2016 the bread wheat (BW) and durum wheat (DW) landrace accessions were evaluated against PstS2 and in 2017 against a mixture of PstS2 and warrior race in field inoculations at Izmir precision stripe rust phenotyping platform. Inoculation was carried out three times during seedling, tillering and booting stages using mixture of fresh spore and talcum powder. Adult-plant responses of tested accessions were recorded according to 0-9 scale once the flag leaf of the susceptible cultivar became fully susceptible. During 2016, out of 3319 BW accessions, 1135 (36%), 871 (28%) and 1133 (36%) were found resistant (1-3 scale), moderately resistant (4-6), and susceptible (7-9) to PstS2, respectively. Amongst the resistant accessions in 2016, 1043 (33%) remained resistant while 786 (25%) showed moderate resistant and 1310 (42%) became susceptible. In 2017, 43% of moderately resistant accessions showed susceptibility to warrior race and 57% remained resistant to moderately resistant. Within the susceptible accessions to PstS2 race in 2016, 22% showed resistance to the warrior race and the remaining were susceptible. In case of DW in 2016, 76% (553) of the accessions were resistant to PstS2, 23% (163) were moderately resistant and only 1% (7) were found susceptible. In 2017, 329 (46%) of the resistant accessions were found resistant, whereas 289 (40%) and 105 (15%) showed moderately resistance and susceptible reaction to Warrior race, respectively. The present data indicated that BW landraces were generally more susceptible to stripe rust than DWs. Susceptibility of both BW and DW accessions to Warrior race indicated that most likely some of the uncharacterized resistance genes which conferred resistance to PstS2 were ineffective against the warrior race. Sources of resistance to both races were identified in both BW and DW. Genetic architecture of identified sources of resistance in present study requires further investigations.

Pages

Subscribe to stripe rust