race analysis

Displaying 1 - 4 of 4

Shahin
Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Egypt.
Co-authors: 
Wasif Youssif, Mohamed Hasan
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Atef

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, [Pst] is a widespread and damaging disease of wheat (Triticum aestivum L.), causing significant losses in yield and quality. During the 2015, eight stripe rust physiological races were identified in greenhouse tests i.e. 0E0, 6E4, 70E20, 128E28, 134E244, 143E245, 250E174, and 450E214. Race 0E0 was the most common and avirulent race, and races 143E245, and 450E214 had high virulence on most of tested Yr resistance gene wheat lines. In the same season, an unusual stripe rust infection occurred in spring wheat at Sakha region in Egypt. Some of the most important commercial cultivars such as (Misr 2, Giza 168 and Sakha 61), known as resistant to the previously characterized races of Pst in Egypt have become susceptible under field conditions. Infections of stripe rust was observed on some wheat lines with Yr genes previously known to be resistant, such as Yr1, Yr17 and Yr32, in a yellow-rust trap nursery at Sakha (30.601400? N, 31.510383? E), northern Egypt. Independent race analysis of collected samples from four governorates i.e. Kafrelsheikh, Al-Sharqia, Dakahleia and Damietta at Sakha Agricultural Research Station in Kafrelsheikh confirmed the detection of a new Pst race in Egypt. Aggressive races with virulence to Yr27 were detected on differentials with Yr27 (Yr27/6*Avocet S), and (Ciano 97) during the 2012 in Egypt. In addition, the Warrior race (virulent on: Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, Yr32, and YrSp) was observed in the 2015 crop season, which indicated continued changes in the Pst the population. In Europe, the Warrior race first identified in 2011 in the United Kingdom, has caused significant change in yellow rust susceptibility of several varieties of both wheat and triticale. In a conclusion, some of wheat cultivars, known to be resistant, were shifted to susceptible due to these new races.

Patpour
Global Rust Reference Center (GRRC), Aarhus University, Denmark
Co-authors: 
Mogens Støvring Hovmøller, Jens Grønbech Hansen, Annemarie Fejer Justesen, Tine Thach, Julian Rodriguez-Algab, Dave Hodson, Biagio Randazzo
Poster or Plenary?: 
Poster
BGRI Year: 
2018
geographic_area: 
Primary Author First Name: 
Mehran

In 2016, severe epidemics of yellow (stripe) rust were observed on durum and bread wheat in European regions where the diseases in the past were insignificant or absent. Stem rust was also observed at epidemic levels for the first time in more than 50 years in Europe. On Sicily, both yellow and stem rust caused epidemics on cultivated durum and bread wheat and numerous breeding lines. In 2017, surveys in farmer fields and trial monitoring were carried out in Southern Italy during April-June. A total of 61 farmer fields and 9 experimental plots were inspected and rust samples collected. Despite unfavourable weather conditions for rust development, stem rust, yellow rust and leaf rust were detected on 86%, 50% and 14% of the surveyed sites, respectively. The surveys on Sicily covered approximately 70% of the durum wheat area, and data uploaded and visualised on the Wheat Rust Toolbox. On mainland Italy and Sardinia, yellow rust was observed, and sampled from nine fields in Sardinia and two in Puglia, whereas stem rust was detected and sampled in experimental plots in Sicily, Sardinia, Puglia, Lazio and Emilia Romagna. A total of 94 samples of stem rust, 30 samples of yellow rust, and 3 rust samples from Berberis aetnensis were sent to GRRC. Preliminary results of yellow rust genotyping and race phenotyping showed prevalence of race Triticale2015. Warrior(-) and a new race (Pst'New'- First detected in 2016) were also detected. For stem rust, TTTTF and TTRTF were detected in Sicily and mainland Italy and TKTTF was identified in Sardinia. Susceptibility of major commercial durum cultivars and breeding lines suggests the need for both durable resistance breeding and systematic surveys coupled to an early warning system.

El Amil
Lebanese Agricultural Research Institute
Co-authors: 
Claude de Vallavieille-Pope, Marc Leconte, Mogens Hovmøller, Kumarse Nazari
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Primary Author First Name: 
Rola

Wheat rusts, caused by the fungal pathogen Puccinia sp. are serious economic diseases of wheat worldwide. Surveillance, monitoring and new virulence identification are prerequisites for future race prediction and for effective breeding programs. Therefore, we decided to compile the endeavours done for surveillance over eight cropping seasons in Lebanon. The extensive field surveys were conducted yearly in major bread and durum wheat areas over the period 2009-2017 using the Borlaug Global Rust Initiative surveillance protocols. Over eight years, 136 locations were surveyed, 56 samples were collected from mainly stripe and stem rust, and X samples were phenotyped using a robust set of standards differentials lines used worlwide at Tel Hadya - ICARDA, 6 phenotyped at INRA - Grignon, 4 phenotyped at the Global Rust Reference Center (GRRC), until the season 2015-2016 the cereal rust laboratory at LARI became autonomous in race analysis. Six samples were genotyped. The latest phenotyping showed that pathotypes had combinations of the virulence for the widely deployed genes Yr2, Yr6, Yr7, Yr8, Yr9, Yr25 and Yr27 resembling to the aggressive strain PstS2, the invasive high temperature tolerant isolate. Resistance genes Yr1, Yr3, Yr4, Yr5, Yr10, Yr15, Yr17, Yr32, and YrSP were effective against all isolates. Race typing of the stem rust sample using the North American stem rust differential sets indicated presence of TKTTF in surveyed wheat growing areas as well as at ICARDA's research station in Terbol. Identified races have been used in field artificial inoculation of ICARDA's breeding program during the last two years. In conclusion, the races PstS2 and TKTTF were the dominant prevalent races in the country for yellow and stem rust respectively. This information could be useful for the region for better integrated disease management and wider diversification of resistance genes deployment in breeding programs.

Afshari
Seed and Plant Improvement Institute (SPII), Iran
Primary Author Email: 
fafshari2003@yahoo.com
Resistance Gene Tags: 
Poster or Plenary?: 
Poster
BGRI Year: 
2015
Abstract Tags: 
geographic_area: 

Stem (black) rust is a potentially important disease in northern, western and southern Iran. A new Pgt race with virulence to gene Sr31 appeared in Iran in 2007. Similar races have spread in Africa and some CWANA countries. In 2014 stem rust was widespread in western, northern, northwestern and central Iran, but at low severities. Thirty-nine stem rust samples were collected for race analysis. After purification and increase each isolate was inoculated to a set of 20 North American differentials in the greenhouse. Infection types were recorded 12-14 days after inoculation using the scale described by McIntosh et al. (1995, Wheat Rusts: An Atlas of Resistance Genes, CSIRO, East Melbourne, Australia). Races TKSTC (59%), TKTTC (20%), TTTTC, KTTSK (virulent on plants with Sr31), TTSTC, PTTTF and TTTTF were detected. Race TKSTC was common in western, northwestern and central Iran. Except for avirulence to Sr17 this race is similar to the race (TKTT) that caused a stem rust epidemic in Ethiopia in 2013.

Subscribe to race analysis