Ethiopia

Displaying 1 - 5 of 5

Rapid isolation and increase of virulent Pgt races and evaluation of germplasm in singlerace field nurseries in Ethiopia

Wheat stem rust is one of the major wheat yield limiting factors in Ethiopia. A stem rust epidemic occurred in the wheat belts of Arsi and Bale zones in the 2013-2014 crop season caused by Pgt race TKTTF that is virulent to the widely grown Ug99-resistant variety Digelu. This epidemic highlighted the need for wheat varieties with resistance to multiple Pgt races. This study was therefore, carried out to evaluate the reaction of the major Ethiopian varieties and advanced breeding lines against the dominant Pgt races in Ethiopia. Races TKTTF, TTKSK, TRTTF and JRCQC were isolated from field samples and multiplied on the susceptible cultivar McNair starting in May 2014. Four wheat stem rust nurseries, each inoculated with a single Pgt race, were established at Kulumsa and monitored from July through October, 2014. Each nursery included 34 entries in two replicates and 137 entries in a single replicate, augmented with six sets of five repeating checks. An additional nursery established at Debre Zeit, containing 551 entries in an augmented design, was evaluated with the epidemic Pgt race TKTTF. These entries included the most relevant Ethiopian bread and durum wheat breeding lines and cultivars, and 34 seedling-susceptible lines to evaluate the race-specificity of adult plant resistance. Stem rust severities for the four races ranged from trace to 80 %. Out of all entries evaluated, 10 were resistant to all four Pgt races, while 11 entries were effective to three of the four races. At Debre Zeit, 31.4% of the entries were resistant to Pgt race TKTTF. This study showed that rapid isolation and increase of Pgt races in Ethiopia is possible to facilitate field screening of breeding lines to select for candidate cultivars with resistance to multiple virulent races of Pgt.

Primary Author: 
Endale Hailu
Primary Author Institution: 
Ethiopian Institute of Agricultural Research (EIAR)
Co-authors: 
E. Hailu, B. Girma, G. Woldeab, B. Hundie, W. Legesse, Z. Tadesse, P. Olivera, M. Newcomb, M. N. Rouse, L. J. Szabo, Y. Jin, D. Hodson, A. Badebo, B. Abeyo, G. Cisar
Poster or Plenary?: 
Plenary
BGRI Year: 
2015
Abstract Tags: 
geographic_area: 

Performance of CIMMYT germplasm in Ethiopia: Key materials for variety development

CIMMYT wheat germplasm flow to Ethiopia started in the late 1960s. Over 90 bread wheat varieties were released over the decades. Of these, about 77% had CIMMYT origins or were derived from CIMMYT materials. Wheat is a traditional rainfed crop grown by 5 million small-scale farmers on 1.6 ha more or less. Yields have increased from 1.0 t/ha in the 1960s to 2.54 t/ha in 2014 mainly due to high yielding semi-dwarf bread wheat varieties and modern agronomic practices. Using such technologies, better farmers often get 5-6 t/ha. The rusts are the most important production constraints. For example, the 2010 yellow rust epidemic debilitated the mega varieties Kubsa and Galama in the highlands. In 2013/14, stem rust caused up to 100% yield losses in the widely adopted bread wheat variety Digalu in Arsi and Bale. This epidemic was caused by Pgt race TKTTF, which is virulent to the gene SrTmp that is present in Digalu, but is avirulent to Sr31, which is overcome by race Ug99 (TTKSK) and derivatives. To avert the increasing threat of rusts, CIMMYT developed a shuttle breeding program where germplasm moves back and forth between Mexico and Kenya and has increased nursery testing sites (Holetta, Kulumsa, Debre Zeit, Sinana, Adet, and Melkassa) in Ethiopia from two to six. The germplasm passes through rigorous tests against major diseases during both the main- and off-seasons. To obtain high yielding rust resistant germplasm, many hundreds of genotypes were introduced and tested over the last two years. In 2014/15, 266 (25%) lines with multiple disease resistances and high yield were promoted to national trials. CIMMYT continues to be an important source of germplasm. Fast tracked variety testing and release, accelerated seed multiplication, demonstration and popularization of new varieties with high yield, multiple disease resistance, and acceptable quality will continue.

Primary Author: 
Abeyo
Primary Author Institution: 
CIMMYT-Ethiopia
Primary Author Email: 
b.abeyo@cgiar.org
Poster or Plenary?: 
Poster
BGRI Year: 
2015
Abstract Tags: 
geographic_area: 

Advances in breeding for resistance to stem rust caused by Ug99 and Ethiopian Pgt races in durum wheat

Stem rust (SR) resistance is required for CIMMYT durum germplasm to keep relevance in Ethiopia, where Ug99 and other Pgt races are a major yield-limiting constraint, and in countries along the possible dissemination paths of these races. Resistance to Ug99 is widespread in most durum germplasm groups when tested in Kenya, but resistance is lost when exposed to Ethiopian races; hence selection at the Debre Zeit site in Ethiopia is essential for durum wheat. Due to difficulties with shuttling segregating populations between Mexico and Ethiopia, we have adopted a strategy involving the identification of resistant/moderately resistant lines at Debre- Zeit, and inter-crossing in Mexico followed by selection for resistance to leaf rust and agronomic type and finally screening for SR reaction in the resulting F6 lines at Debre-Zeit at the same time as they are tested for yield and quality in preliminary yield trials in Mexico. This has generated a significant increase in the proportion of resistant and moderately resistant genotypes within outgoing CIMMYT germplasm, from less than 3% at the onset of the initiative in 2008 to 16% in 2011, and 38% in 2013. SR-resistant germplasm was characterized by similar frequency distributions to other traits in the overall germplasm such as yield potential, drought tolerance and industrial quality parameters. Advances have also been realized using marker-assisted selection (MAS) to introgress Sr22 from bread wheat and to combine it with Sr25, producing advanced lines with 2-gene stacks with confirmed outstanding resistance and superior quality attributes. Since the two genes are closely linked but from different sources bringing them together required a very rare recombination event finally detected via MAS among thousands of plants. They are now essentially inherited together with a very low likelihood of generating recombinant individuals with either gene. The yield potential and stability of these lines are under evaluation in Ethiopia and the best lines are being used in a second round of breeding.

Primary Author: 
Karim Ammar
Primary Author Institution: 
CIMMYT
Resistance Gene Tags: 
Co-authors: 
B. Ayele, A. Bekele, A. Loladze, S. Dreisigacker, and R.J. Pena
Poster or Plenary?: 
Plenary
BGRI Year: 
2014
geographic_area: 

Cultivating Success in Ethiopia: The contrasting stripe rust situations in 2010 and 2013

In 2010, Ethiopia experienced one of the largest stripe rust epidemics in recent history. Over 600,000 ha of wheat were affected, an estimated 60 million Ethiopian Birr ($US3.2 million) were spent on fungicides and large production losses were observed. Factors associated with the 2010 epidemic were conducive climatic conditions (prolonged rain and apparently optimal temperatures), large areas planted to susceptible cultivars, early infection and rapid spread of a virulent pathogen, a low level of awareness, and ineffective control measures. In 2013, highly favourable climatic conditions and early appearance of stripe rust showed remarkable similarity to the conditions observed in 2010, prompting fears of a similar major rust epidemic. However, no stripe rust epidemic developed in 2013. In contrast, only limited and localized outbreaks of stripe rust were observed in 2013; wheat crops remained in good condition and a good harvest was achieved. It seems that a series of positive and timely actions in Ethiopia contributed to the markedly different stripe rust situation in 2013 compared to 2010. The principle factors associated with the positive outcomes in 2013 are (i) effective promotion, plus rapid and widespread adoption of rust resistant wheat cultivars since 2010 - this dramatically reduced the vulnerability of the Ethiopian wheat crop; and (ii) timely and coordinated surveillance efforts, coupled to good information exchange amongst different stakeholders - this resulted in effective control and awareness campaigns that targeted emerging stripe rust outbreaks. A comparative analysis is presented which highlights the similarities and disparities between the 2010 and 2013 stripe rust situations in Ethiopia. The roles and contributions of different organisations are examined and an in-depth analysis of the biophysical conditions in the different years is presented.

Primary Author: 
Bekele Abeyo
Primary Author Institution: 
CIMMYT-Ethiopia
Co-authors: 
D. Hodson, B. Hundie, G. Woldeab, B. Girma, A. Badebo, Y. Alemayehu, T. Jobe, A. Tegegn, and W. Denbel
Poster or Plenary?: 
Plenary
BGRI Year: 
2014
Abstract Tags: 
geographic_area: 

Screening for stem rust resistance in East Africa

The East Africa program of the Borlaug Global Rust Initiative (BGRI) was launched to reduce the scale and scope of wheat stem rust epidemics in Kenya and Ethiopia, and to mitigate the global threat of virulent and dangerous rust races originating from this region. Since the launch in 2005, the screening facilities in Kenya and Ethiopia have helped to determine the extent of the world’s vulnerability to stem rust race Ug99 and its variants, identify diverse sources of resistance including adult plant resistance based on minor genes, and catalyze a comprehensive global response, leading to expanded awareness, expanded research and breeding activities, and resource mobilization. This paper reviews the role and achievements of the eastern African screening facilities along with the opportunities and challenges faced by the facilities during the ongoing global response to the emergence of Ug99 and its variants.

Complete Poster or Paper: 
Primary Author: 
Davinder Singh
Primary Author Institution: 
The University of Sydney, Plant Breeding Institute, Australia
Co-authors: 
B. Girma, P. Njau, R. Wanyera, A. Badebo,S. Bhavani, R.P. Singh, J. Huerta-Espino, G. Woldeab, and R. Ward
Poster or Plenary?: 
Plenary
BGRI Year: 
2009
Abstract Tags: 
geographic_area: 
Subscribe to Ethiopia