Canada

Displaying 1 - 3 of 3

Randhawa
Agriculture and Agri-Food Canada, Lethbridge, Alberta
Co-authors: 
Gurcharn Brar, Randy Kutcher, Raman Dhariwal
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
geographic_area: 
Primary Author First Name: 
Harpinder

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat in western Canada. Although stripe rust was an issue in southern Alberta for many years, it became important in other parts of the country after a dramatic population shift in 2000, resulting from an invasive race. Sporadic epidemics of the disease are common and cause considerable loss, due to which, an intermediate level of resistance to stripe rust was required for new varietal registrations beginning 2017. Virulence surveys are of key importance in germplasm and cultivar development as they provide breeders and pathologists the information needed to better understand host-pathogen interactions and the effectiveness of Yr genes. Virulence characterization revealed a wide range of virulence phenotypes exhibited by 33 Pst races in western Canada, although only 2-3 races were predominant. The expression of Yr genes may differ between controlled conditions and natural field conditions as previously reported. Thus, stripe rust differentials and wheat cultivars grown in western Canada are also screened at multiple locations in every year. At present, all stage resistance genes Yr1, Yr4, Yr5, Yr15, Yr76, and YrSP are effective against the predominant Pst races, whereas at the adult stage under field conditions, Yr2, Yr17, Yr28, or those carried by Yamhill are also effective. Seedling resistance genes Yr7, Yr10, Yr17, or Yr27 were the most common in Canadian wheat cultivars. Of these, only Yr17 is effective under field conditions. Adult plant resistance genes Yr18 and Yr29 are carried by many cultivars, but are not effective under high disease pressure. The effectiveness of each resistance gene may vary between the eastern and western prairies of western Canada due to differences in virulence. Regular virulence surveys using contemporary and regional cultivars facilitate the development of rust resistant cultivars.

Brar
Crop Development Centre/Department of Plant Science, University of Saskatchewan, Saskatoon, Canada
Co-authors: 
Sajid Ali, Dinah Qutob, Steve Ambrose, Ron Maclachlan, Kun Lou, Curtis Pozniak, Yong-Bi Fu, Andrew Sharpe, Randy Kutcher
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
geographic_area: 
Primary Author First Name: 
Gurcharn Singh

Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is one of the most important pathogens of wheat. Attempts have been made in the past to characterize the worldwide genetic structure of Pst populations, excluding Canada. Characterization of 59 isolates identified 33 races with three most common races representing half of the population and subtle differences in races of eastern and western prairies. For molecular characterization, 48 isolates were sequenced to obtain SNPs and genotyped with Pst-specific SSR markers. Isolates that were suspected of recombination based on SNP data were examined for their telia production ability as a proxy for sexual recombination. The study revealed that the majority of the population was clonal, however, not exclusively clonal, with the existence of four genetic lineages. Two lineages previously reported were identified: PstS0, representing an old northwestern-European and PstS1, an invasive warmer-temperature adapted lineage. Additionally, two new lineages, PstPr and PstS1-related, were detected that have not been reported previously. The PstPr and PstS1-related lineages produced more telia than the other lineages and had double the number of unique recombination events compared to PstS0 and PstS1. PstPr was concluded to be a sexual recombinant and an exotic incursion, which was closely associated with PstS5, PstS7 (Warrior), and PstS8 (Kranich) lineages, all of which arose by sexual recombination in the center of diversity - the Himalayan region. The total phenotypic variation in the population could not be explained solely by molecular genotypes, and a hypothesis on existence of epigenetic machinery in the Pst genome was tested. Homologs of the DNMTases class (DNMT1) were identified, providing compelling evidence of a role for DNA methylation. As a first report of DNA methylation, an average of ~5%, 5-methyl cytosine (5-hmC) in the Puccinia epigenome indicated the possibility of epigenetic regulation, which merits further investigation.

Humphreys
Agriculture and Agri-Food Canada, Cereal Research Centre, Canada
Resistance Gene Tags: 
Co-authors: 
T. Fetch, C.W. Hiebert, and B. McCallum
Poster or Plenary?: 
Poster
BGRI Year: 
2009
geographic_area: 

Stem rust, caused by Puccinia graminis f. sp. tritici, is a highly destructive fungal disease of wheat. This pathogen has been effectively controlled in western Canada through resistance since the 1950s. In 1999, a new highly virulent race of stem rust was identified in Uganda. The new strain, named “Ug99”, was given the North American race designation TTKSK. In situ screening has demonstrated that approximately 75% of Canadian wheat cultivars are susceptible to this new race of stem rust. Fortunately, two cultivars, Peace and AC Cadillac, were highly resistant to Ug99. A doubled haploid population was generated from the cross: RL6071/Peace, where RL6071 was the stem rust susceptible parent. In 2008, 189 DH lines from this population were evaluated for response to Ug99 in Kenya. RL6071 and Peace were rated: 80 S and 5 R, respectively. Disease ratings of the DH lines, ranged from 80 S to 1 R. Mendelian evaluation of the stem rust scores indicated a two-gene model (X2=5.51; 0.25<P<0.10; d.f.=3) of inheritance. Peace has the positive allele for the diagnostic Lr34 DNA marker (csLVMS1) published by Spielmeyer et al. (2008). It is believed that Peace carries Lr34 and that this gene may be one of the genes responsible for Ug99 resistance in this cultivar. Molecular mapping of the Ug99 resistance in cultivar Peace is underway.

Subscribe to Canada