Rust-proofing wheat for a changing climate

Sukumar Chakraborty


CSIRO Plant Industry, Australia

Jo Luck, Grant Hollaway, Glenn Fitzgerald, and Neil White



This paper offers projections of potential effects of climate change on rusts of wheat and how we should factor in a changing climate when planning for the future management of these diseases. Even though the rusts of wheat have been extensively studied internationally, there is a paucity of information on the likely effects of a changing climate on the rusts and hence on wheat production. Due to the lack of published empirical research we relied on the few published studies of other plant diseases, our own unpublished work and relevant information from the vast literature on rusts of wheat to prepare this overview. Potential risks from a changing climate were divided into three major groups: increased loss from wheat rusts, new rust races evolving faster and the reduced effectiveness of rust resistances. Increased biomass of wheat crops grown in the presence of elevated CO2 concentrations and higher temperatures will increase the leaf area available for attack by the pathogen. This combined with increased speed of the pathogen’s life cycle, may increase the rate of epidemic development in many environments. Likewise, should the effects of climate change result in more conducive conditions for rust development there will also be a corresponding increase in the rate of evolution of new and presumably virulent races. The effectiveness of some rust resistance genes are influenced by temperature, crop development stage and even nitrogen status of the host. It is likely that direct and indirect changes on the host from climate change may influence the effectiveness of some of these resistance genes. Currently the likely effects of climate change on the effectiveness of disease resistance is not known and since disease resistance breeding is a long term strategy it is important to determine if any of the important genes may become less effective due to climate change. Studies must be made to acquire new information on the rust disease triangle to increase the adaptive capacity of wheat under climate change. BGRI leadership is needed to broker research on rust evolution and the durability of resistance under climate change.