Population dynamics of wheat stem rust fungus in Indian subcontinent during 2009-2015

Subhash Bhardwaj


ICAR-IIWBR, Regional Station, Flowerdale,Shimla 171002 H.P. India

Pramod Prasad, OmPrakash Gangwar, Hanif Khan, Siddanna Savadi, Subodh Kumar

    



Stem rust (Puccinia graminis tritici) (Pgt) epidemics have been reported from many wheat growing areas of the world. Stem rust races with virulence to Sr31 (Ug99 type races),are a threat to wheat producing African countries. Currently 11 different variants of the Ug99 lineage have been reported from different countries. Despite no report of Ug99 variants from any of the South Asian countries, the efforts are in place to counter the possible introduction of virulent wheat stem rust races. Stem rust surveillance has been a major component of the rust resistance breeding worldwide. This study reports virulence phenotypes and functional SSR marker based genotypes among stem rust collections in the Indian subcontinent during 2009 to 2015.
Wheat stem rust samples were analyzed on differential sets used for pathotype identification in India. Twelve pathotypes of Pgt were identified in a total of 574 samples analyzed. Pgt pathotypes 40A and 11 were identified in 36% and 32% of the samples, respectively. The stem rust resistance genes Sr7a, Sr26, Sr27, Sr31, Sr32, Sr33, Sr39, Sr40, Sr43, SrTmp and SrTt3 were found to confer resistance to the field population identified during this period. The analysis of SSR marker genotypes data revealed a high degree of variability in the Pgt population, with mean gene diversity and polymorphic information content (PIC) values of 0.56 and 0.50, respectively. STRUCTURE software divided the Pgt populations in to four subpopulations with some admixtures. The FST values of pairs of subpopulations ranged from 0.35 to 0.93 which indicated that the four sub-populations were significantly differentiated. The analysis of molecular variance (AMOVA) determined that 16%, 69% and 15% of the totl variation was between population, among and within individuals, respectively. The information generated here could be a useful guide for resistance breeding and gene deployment programmes for saving South Asian wheat from stem rust.