Investigation on heat stress tolerance in bread wheat (Triticum aestivum. L) for the conditions of terminal heat stress.

Juned Bagwan

Agharkar Research Institute Pune

yashavantha kumar,Kakanur, Shrikanth, Khairnar, Balgounda, Honrao, Vijendra, Baviskar, Ajit, Chavan, Vitthal, Gite, Deepak, Bankar, Sameer, Raskar, Satish chandra, Misra, , , , , , , , , , , ,


Heat stress globally remains the most important factor determining yield anomalies. Terminal heat stress shortens the duration of grain filling. Hence, this investigation was undertaken during the cropping season 2016-17 to evaluate heat stress tolerance of 32 bread wheat genotypes planted in timely (optimal temperature) and late (terminal heat stress) sown condition at Agharkar Research Institute, Pune. Data were collected and analyzed for various agronomical and physiological traits and also selection indices for stress tolerance, derived from grain yield of wheat genotypes under optimal and late sowing conditions. It was observed that the genotypes DBW 187, GW 477, HD 2932, DBW 107, PBW 752 were the highest yielding under timely sown condition whereas, HD 3226, DBW 187, HP 1963, HD 3219, DBW 196 were the highest yielding under late sown condition. DBW 187 was found to withstand the stress conditions. Minimum percent yield decrease and high yield stability index (YSI) was found in HD 3219 followed by HD 3226 and DBW 196 which indicated their better performance under stress condition. Harmonic mean, a stress tolerance selection index was found to be the best fit of linear model (R2 = 0.78) and a good indicator of high yield under heat stress condition. Physiological parameters, Chlorophyll (SPAD), canopy temperature (Infra-red thermometer) and vegetation index (NDVI) have not shown significant relation with yield, however, they were found to be significantly associated with yield contributing traits like biomass, thousand grain weight, grain number per spike. DBW 187 and HP 1963 showed stable yields with high PCA 1 and low PCA 2, indicating their resilience to stress conditions. The investigation has resulted in identification of genotypes for terminal heat stress conditions and also given greater insights in understanding the importance of physiological traits and stress tolerance indices in selection process.