The global cereal rust monitoring system

David Hodson


K. Cressman, K. Nazari, R.F. Park, and A. Yahyaoui


Cereal rusts have long been the scourge of wheat farmers worldwide. Three fungal rusts are capable of inflicting serious economic damage to wheat; namely, leaf rust, stripe rust, and stem rust. Historically, stem rust was the most feared disease of wheat, but since the 1950s, effective resistance has protected crops and livelihoods. By the mid 1990s stem rust had been reduced to negligible levels worldwide. The detection of the Ug99 lineage of stem rust in Uganda in 1998 has challenged the assumption that stem rust was a conquered disease, and up to 80% of the world’s wheat is now considered stem rust susceptible. Ug99 has sparked a global effort by wheat scientists to counter the threat and has highlighted the need for effective surveillance and monitoring systems. Outside of a few developed countries, monitoring efforts are often irregular or even non-existent and no coordinated global surveillance effort currently exists. Ug99 has provided the impetus to implement a global surveillance and monitoring system that provides relevant and timely information as a global public good. Key components, current status and future plans for this emerging cereal rust monitoring system are described. The immediate concern regarding Ug99 makes it an initial priority focus, but the other cereal rusts cannot nor should be excluded. Lessons can be learned and parallels drawn from existing successful trans-boundary monitoring schemes such as the Desert Locust monitoring and early warning system implemented by the UN Food and Agriculture Organization (FAO). Successful networking, expanded capacity of partners, efficient field surveys and data handling, plus regular timely targeted information products are all components of the Desert Locust scheme that need to be transferred to a cereal rust monitoring system. Through a consortium of partners several advances have already been made targeting the Ug99 lineage of stem rust. GIS technology is forming the backbone of an emerging rust monitoring and surveillance system being developed collaboratively by international agricultural research centers, UN agencies and advanced research institutes. The system already incorporates a rapidly expanding volume of standardized geo-referenced field survey data, routine use of wind models and public domain web tools delivering information in near-real time. Several challenges still remain before a fully operational system is created, and these are outlined. The need for vigilance and a lack of complacency regarding unexpected events are highlighted. These might include; accidental assisted movements, natural long distance dispersal and the threat of rust pathogens occurring in “non-traditional” areas as a result of climate change.