Achieving triple rust resistance in wheat through combination of phenomic and genomic tools

Urmil Bansal


University of Sydney Plant Breeding Institute

Naeela Qureshi, Vallence Nsaiyera, Pakeer Kandiah, Mesfin Gesesse, Mandeep Randhawa, Mumta Chhetri, Bosco Chenayek, James Kolmer, Miroslav Valarik, Zaroslav Dolezel, Beat Keller, Matthew Hayden, Justin Faris, Harbans Bariana, Vanessa Wells



Dr. Norman Borlaug stated that rust never sleeps and this enables rust pathogens to produce new strains capable of putting rust resistance genes to rest. These pathogens continue to pose threats to global wheat production. Wheat breeders have made significant progress to control rust outbreaks using conventional selection technologies; however, some critical shifts in pathogen populations have let them down. Rapid evolution in molecular marker technologies in the last 15 years and refinement of phenomic facilities have expedited the process of discovery and characterisation of rust resistance genes to underpin the development and validation of markers closely linked with genetically diverse sources of resistance. A high proportion of the formally named rust resistance genes were characterized in the 21st century and markers closely linked with these genes have been developed and validated. The marker tagged sources of resistance to three rust diseases have equipped the wheat breeding community with tools to deploy combinations of all stage and adult plant resistance genes in future wheat cultivars. The question that whether we have enough resistance genes discovered to compete against the ever-awake rust pathogens. In our opinion, we cannot be complacent and discovery needs to continue to ensure food security. This presentation will discuss the role of advances in phenomic and genomic technologies to achieve durable rust control in wheat.