ug99

Displaying 1 - 10 of 11

New variants in the Ug99 race group found in Kenya in 2013 and 2014

Since 1998, when Pgt race TTKSK (Ug99) was first identified in Uganda, seven variants in the Ug99 race group have been reported in nine countries in eastern and southern Africa. Five of these variants (TTKSK, TTKST, TTTSK, PTKSK, and PTKST) have been observed in Kenya. Increased surveillance efforts in recent years have enabled detection of new virulence combinations that threaten wheat production. Three new variants in the Ug99 race group were identified from samples collected in 2013 and 2014 in Kenya. A new race, TTHST that is identical to TTKST but avirulent on Sr30 (IT 2-), was identified from a sample collected in the Central Rift Valley Region in 2013. In 2014, two new races, TTKTK and TTKTT, were identified from a total of nine samples (six collected from cv. Robin, and one from each of Eagle10, NJRBW II, and barley) in multiple regions. These two races are of special concern as both are virulent on SrTmp, a gene that is effective against all previously known races in the Ug99 group. Resistance gene SrTmp is postulated to be the source of TTKSK resistance in cv. Robin (released in 2011 in Kenya, also postulated to have Sr2) and cv. Digalu (released in 2005 in Ethiopia). The presence of new races with virulence on SrTmp may explain the high levels of stem rust severity observed in wheat cultivar Robin in Kenya in the past two years. Genotypic relationships between these new races and known races in the Ug99 race group are being characterized using SNP markers. Cultivars and elite breeding lines from Kenya, CIMMYT, and the US are being evaluated for seedling reactions to race TTKTT. With the detection of these new races, there are a total of eight variants in the Ug99 race group in Kenya.

Primary Author: 
Maria Newcomb
Primary Author Institution: 
USDA-ARS Arid Land Agricultural Research Center
Co-authors: 
P. Olivera, R. Wanyera , S. Gale3, D. Luster , S. Bhavani , M. Rouse , L.J. Szabo and Y. Jin
Poster or Plenary?: 
Plenary
BGRI Year: 
2015
Abstract Tags: 
geographic_area: 

A decade of stem rust surveillance: How far have we come and where are we going?

In response to the threat posed by Ug99 (race TTKSK) and a global expert panel assessment, the Borlaug Global Rust Initiative (BGRI) was formed in 2005. This represented one of the most comprehensive global programs to address an emerging crop pathogen threat. For the last decade, surveillance and monitoring has been a key component of the BGRI. Progress in rust surveillance and monitoring over the last ten years is critically reviewed, with a focus on stem rust. The transition from a data poor environment regarding stem rust to a fully functional, comprehensive crop pathogen surveillance system is a notable success. Key components and status of the current system are described, including; the surveillance network, the data management and information platforms, and pathogen tracking. The application of the existing surveillance and monitoring system and the current status of important stem rust races are described. The role that new technologies are playing in the monitoring and tracking of stem rust is highlighted. Recent stem rust epidemics in East Africa provide stark warning of threat that the disease poses and the clear need to continuously monitor evolving stem rust populations. Shortcomings of the existing system are examined and future directions for the surveillance and monitoring system are outlined. 

Primary Author: 
Dave Hodson
Primary Author Institution: 
CIMMYT-Ethiopia
Co-authors: 
R.F. Park, J. Grønbech-Hansen, P. Lassen, K. Nazari, Y. Jin, M. Hovmøller, L. Szabo, Z.A. Pretorius, T. Fetch, M. Meyer, J.A. Cox, C.A. Gilligan, L. Burgin, M. Hort
Poster or Plenary?: 
Plenary
BGRI Year: 
2015
Abstract Tags: 

Molecular mapping of resistance to the Pgt race Ug99 group in spring wheat landrace PI 177906

Wheat landrace PI 177906 has seedling and field resistance to Pgt races TTKSK and TTKST. From a cross between PI 177906 and LMPG-6, 138 doubled haploid (DH) lines and 144 recombinant inbred lines (RILs) were developed and tested for seedling resistance to Pgt race TTKSK. Goodness-of-fit tests from both populations indicated that two dominant genes in PI 177906 conditioned resistance to race TTKSK. Parents and the 138 DH lines were evaluated in the field in two experiments in Kenya; one in the main season and one in the off-season. The 90K wheat iSelect SNP genotyping platform was used to genotype the parents and DH lines and data were used to construct a genetic linkage map. Two loci for seedling resistance were mapped to chromosomes 2BL and 4BL. Two major QTL for field resistance mapped to the same regions, a 14.4 cM interval on 2BL and an 8.5 cM interval on 4BL. The QTL on 2BL and 4BL explained, respectively, 31.9-32.3% and 18.2-19.1% of the variation in the off-season and 28.3-30.4% and 5.4-6.5% of the variation in the main-season. Based on the mapping results, race specificity, and the seedling infection types, the resistance gene in 2BL could be Sr28, whereas the gene on chromosome 4BL could be novel. The mapping results will be verified in the RIL population using the flanking SNP markers in KASP assays.

Complete Poster or Paper: 
Primary Author: 
Babiker
Primary Author Institution: 
USDA-ARS, Small Grains and Potato Germplasm Research Unit, USA
Primary Author Email: 
Ebrahiem.Babiker@ARS.USDA.GOV
Poster or Plenary?: 
Poster
BGRI Year: 
2015

Advances in breeding for resistance to stem rust caused by Ug99 and Ethiopian Pgt races in durum wheat

Stem rust (SR) resistance is required for CIMMYT durum germplasm to keep relevance in Ethiopia, where Ug99 and other Pgt races are a major yield-limiting constraint, and in countries along the possible dissemination paths of these races. Resistance to Ug99 is widespread in most durum germplasm groups when tested in Kenya, but resistance is lost when exposed to Ethiopian races; hence selection at the Debre Zeit site in Ethiopia is essential for durum wheat. Due to difficulties with shuttling segregating populations between Mexico and Ethiopia, we have adopted a strategy involving the identification of resistant/moderately resistant lines at Debre- Zeit, and inter-crossing in Mexico followed by selection for resistance to leaf rust and agronomic type and finally screening for SR reaction in the resulting F6 lines at Debre-Zeit at the same time as they are tested for yield and quality in preliminary yield trials in Mexico. This has generated a significant increase in the proportion of resistant and moderately resistant genotypes within outgoing CIMMYT germplasm, from less than 3% at the onset of the initiative in 2008 to 16% in 2011, and 38% in 2013. SR-resistant germplasm was characterized by similar frequency distributions to other traits in the overall germplasm such as yield potential, drought tolerance and industrial quality parameters. Advances have also been realized using marker-assisted selection (MAS) to introgress Sr22 from bread wheat and to combine it with Sr25, producing advanced lines with 2-gene stacks with confirmed outstanding resistance and superior quality attributes. Since the two genes are closely linked but from different sources bringing them together required a very rare recombination event finally detected via MAS among thousands of plants. They are now essentially inherited together with a very low likelihood of generating recombinant individuals with either gene. The yield potential and stability of these lines are under evaluation in Ethiopia and the best lines are being used in a second round of breeding.

Primary Author: 
Karim Ammar
Primary Author Institution: 
CIMMYT
Resistance Gene Tags: 
Co-authors: 
B. Ayele, A. Bekele, A. Loladze, S. Dreisigacker, and R.J. Pena
Poster or Plenary?: 
Plenary
BGRI Year: 
2014
geographic_area: 

Waste not, want not: The importance of being earnest about gene stewardship

The shortage of stem rust resistance genes effective against the Ug99 group prompted recent efforts to increase the number of resistance genes available to breeders. We are fortunate that many new and/or cytogenetically improved rust resistance genes are now being shared with the global wheat breeding community by their developers. If we are poor stewards of these resources, the new resistance genes will eventually be defeated, and we will waste the efforts and investments that have been made. However, if we are good stewards, we should have enough resistance to achieve sustainable, durable resistance. Stewardship can be defined as the careful and responsible management of something entrusted to one’s care. What should we do to safeguard the new resistance genes? Diversification of resistance is often suggested as a way to reduce the risk of large scale epidemics. Although diversification is generally a good idea, it cannot be at the expense of leaving new genes exposed and vulnerable. A durable combination (pyramid) must be designed so that the component genes protect each other. They should reduce the probability of simultaneous pathogen mutations to virulence and they should avoid stepwise erosion of the pyramid by preventing significant reproduction of any new race that is virulent on component genes. We need pyramids to be immune or nearly immune not only to current races, but to anticipated mutants. This objective should be achievable with three or more major genes or a combination of major and minor genes. Successful gene stewardship will depend on several things. On the technical side, we will need very good markers for each gene. Each breeding program will require strong genotyping support to assemble and then validate pyramids. Most importantly, successful stewardship will require that we organize our user community to cooperate more closely. We will need to decide which genes require special stewardship and which do not. Every user of the stewardship pool resource will need to participate in earnest. It only takes one cultivar with an unprotected gene to give the pathogen a stepping stone to greater virulence. As they say, a chain is only as strong as the weakest link

Primary Author: 
Robert Bowden
Primary Author Institution: 
USDA-ARS, Hard Winter Wheat Genetics Research Unit
Poster or Plenary?: 
Plenary
BGRI Year: 
2013
Abstract Tags: 

Putting Ug99 on the map: An update on current and future monitoring

Detection of stem rust race TTKSK (Ug99) from Uganda in 1998/99 highlighted not only the extremely high vulnerability of the global wheat crop to stem rust but also a lack of adequate global systems to monitor such a threat. Progress in the development and expansion of the Global Cereal Rust Monitoring System (GCRMS) is described. The current situation regarding the Ug99 lineage of races is outlined and the potential for expansion into important wheat areas is considered. The GCRMS has successfully tracked the spread and changes that are occurring within the Ug99 lineage and is now well positioned to detect and monitor future changes. The distribution of Ug99 variants possessing combined virulence to Sr31 and Sr24 is expanding rapidly and future spread outside of Africa is highly likely. Efficient and effective data management is now being achieved via the Wheat Rust Toolbox platform, with an expanding range of dynamic information products being delivered to endusers. Application of new technologies may increase the efficiency of the GCRMS, with mobile devices, molecular diagnostics and remote sensing all seen to have potential application in the medium to longterm. Expansion of the global capacity for race analysis is seen to be critical and integration of the Global Rust Reference Centre into the stem rust monitoring network is seen as a positive development. The current acute situation with severe epidemics of stripe rust in many countries indicates a clear need for more effective global monitoring systems and early warning for this pathogen. The existing GCRMS for stem rust is seen as a good foundation for this to occur.

Complete Poster or Paper: 
Primary Author: 
David Hodson
Primary Author Institution: 
CIMMYT-Ethiopia
Co-authors: 
K. Nazari, R.F. Park, J. Hansen, P. Lassen, J. Arista, T. Fetch, M. Hovmøller, Y Jin, Z.A. Pretorius, and K. Sonder
Poster or Plenary?: 
Plenary
BGRI Year: 
2011
Abstract Tags: 

Mapping of durable adult plant stem rust resistance in six CIMMYT wheats to Ug99 group of races

Durable resistance to wheat stem rust fungus can Be achieved by developing and deploying varieties that have race-nonspecific, adult plant resistance (APR) conferred by multiple minor, slow rusting genes. Wheat lines ‘Kingbird, ‘Kiritati’, ‘Huirivis#1’, ‘Juchi’, ‘Muu’ and ‘Pavon 76’ showed high levels of APR to Ug99 races of stem rust fungus when tested in Kenya. The F5 and F6 generation recombinant inbred line (RIL) populations developed from the crosses of moderately susceptible ‘PBW343’ with five resistant parents were used in mapping. The non-Sr26 fraction of the ‘Avocet’ x Pavon 76 RIL population, developed earlier for leaf rust and stripe rust resistance studies, was also included. Field phenotyping of the parents and RILs were conducted at Njoro, Kenya for at least two years with Ug99+Sr24 (TTKST) race under high stem rust pressures. The continuous variation of APR in each RIL population and genetic analyses indicated quantitative nature of resistance that was likely governed by 3 or 4 minor genes. Single and joint year analyses by Inclusive Composite Interval Mapping (ICIM) using informative DArT and/or SSR markers identified consistent APR QTLs on chromosomes 1AL, 3BS, 5BL, 7A and 7DS in Kingbird; 2D, 3BS, 5BL and 7DS in Kiritati; 2B, 3BS, 4A, 5BL and 6B in Juchi; 2B, 3BS, 7B in Huirivis#1; 2B, 3BS and 5BL in Muu; and 1BL, 3BS, 5A and 6B in Pavon 76. QTLs on each genomic regions explained 10- 46% of the phenotypic variation for APR. Pseudo-black chaff phenotype associated with APR gene Sr2 on chromosome 3BS in all six resistant parents and identification of an APR QTL in the same region in all mapping populations confirmed the role of Sr2 in reducing stem rust severity. The 1BL QTL in Pavon 76 was in the same region where pleiotropic APR gene Lr46/Yr29/Pm39 is located. Similarly a 7DS QTL in Kingbird and Huirivis#1 was in the chromosomal region where pleiotropic APR gene Lr34/Yr18/Pm38 is located. These results indicate that the above two pleiotropic resistance genes confer APR to stem rust in addition to leaf rust, yellow rust and powdery mildew. Further studies are underway to saturate the genomic regions harboring new APR QTLs with additional molecular markers.

Complete Poster or Paper: 
Primary Author: 
Sridhar Bhavani
Primary Author Institution: 
CIMMYT-Kenya
Resistance Gene Tags: 
Co-authors: 
R. P. Singh, O. Argillier, J. Huerta-Espino, S. Singh, and P. Njau
Poster or Plenary?: 
Plenary
BGRI Year: 
2011
Abstract Tags: 

Characterization of two new wheat stem rust races within the Ug99 lineage in South Africa

Two new races of the wheat (Triticum aestivum L.) stem rust pathogen, representing the fifth and sixth variants described within the Ug99 lineage, were detected in South Africa. Races TTKSP and PTKST (North American notation) were detected in 2007 and 2009, respectively. Except for Sr24 virulence, race TTKSP is phenotypically identical to TTKSF, a commonly detected race of Puccinia graminis f. sp. tritici (Pgt) in South Africa. PTKST is similar to TTKSP except that it produces a lower infection type on the Sr21 differential and has virulence for Sr31. Simple sequence repeat (SSR) analysis confirmed the genetic relationship amongst TTKSF, TTKSP, PTKST and TTKSK (Ug99). TTKSK, PTKST and TTKSF grouped together with 99% similarity, while sharing 88% genetic resemblance with TTKSP. These four races in turn shared only 31% similarity with other South African races. It is proposed that TTKSP arose locally as a single step mutation from race TTKSF, whereas PTKST probably represents an exotic introduction of Pgt to South Africa.

Complete Poster or Paper: 
Primary Author: 
Botma Visser
Primary Author Institution: 
Department of Plant Sciences, University of the Free State, South Africa
Co-authors: 
Liezel Herselman, Robert F. Park, Haydar Karaoglu, Cornelia M. Bender, and Zacharias A. Pretorius
Poster or Plenary?: 
Plenary
BGRI Year: 
2010
Abstract Tags: 

Cytogenetic manipulation to enhance the utility of alien resistance genes

Although many wild relatives in the Triticeae tribe have been exploited to transfer stem rust resistance genes to wheat, the derived germplasms have often not been immediately useful in wheat breeding programs. Too frequently, large chromosome segments surrounding desirable genes also harbor deleterious genes that result in unacceptable yield or quality. Recombination between chromosomes of wheat and chromosomes of distant relatives is very rare due to genetic restrictions on chromosome pairing in polyploid wheat. However, chromosome pairing can be manipulated by utilizing mutant stocks that relax this tight genetic control. The ph1b mutant produced by E.R. Sears over 30 years ago is an invaluable chromosome engineering tool, readily employed in the age of high-throughput molecular genetics. Shortened translocations have already been produced for stem rust resistance genes Sr26 and SrR using ph1b-induced homoeologous recombination. We are currently using induced-homoeologous recombination to reduce the sizes of alien chromosome segments surrounding TTKSK-effective genes Sr32, Sr37, Sr39, Sr40, Sr43, Sr47, SrTt3, Sr2S#1 and SrAeg5 to eliminate linkage drag putatively associated with these genes. Additional TTKSK-effective genes Sr44, SrHv6, SrAsp5, and SrAse3 were first targeted for development of compensating translocation stocks and then for shortening the size of each alien segment. Population development is also underway to characterize several potentially new sources of resistance.

Complete Poster or Paper: 
Primary Author: 
Mike Pumphrey
Primary Author Institution: 
Department of Crop and Soil Sciences, Washington State University, USA
Co-authors: 
I.S. Dundas, S.S. Xu, Y. Jin, J.D. Faris, X. Cai, W.X. Liu, L.L. Qi, B. Friebe, and B.S. Gill
Poster or Plenary?: 
Plenary
BGRI Year: 
2009
Abstract Tags: 

Progress and prospects in discovery and use of novel sources of stem rust resistance

A number of stem rust resistance genes derived from wild relatives of wheat appeared to be more effective against race TTKSK (Ug99) of Puccinia graminis f. sp. tritici than Sr genes of wheat origin. In an attempt to identify sources of stem rust resistance genes effective against TTKSK, we evaluated several cultivated and wild relatives of wheat for resistance to TTKSK and other stem rust races with broad virulence in seedling tests. Preliminary results indicated that TTKSK resistance could readily be found, but frequencies of resistance varied among the species. Aegilops speltoides had the highest frequency of resistance (nearly 100%). Other species having high frequencies of TTKSK resistance included triticale (77.7% of 567 accessions), Triticum urartu (96.8% of 205 accessions), and T. monococcum (61% of 1020 accessions). Frequencies of TTKSK resistance in other species were: 14.7% in Ae. tauschii (456 accessions), 15% in T. timopheevii (298 accessions), and 17% in T. turgidum ssp. dicoccoides (157 accessions). Based on specific infection types to several races, we postulated that novel genes for resistance to TTKSK are present in some of these species. Accessions with putatively new resistance genes were selected to develop crosses for introgressing resistance into wheat and for developing mapping populations.

Complete Poster or Paper: 
Primary Author: 
Yue Jin
Primary Author Institution: 
USDA-ARS, Cereal Disease Laboratory
Co-authors: 
M. Rouse, P.D. Olivera, and B.J. Steffenson
Poster or Plenary?: 
Plenary
BGRI Year: 
2009
Abstract Tags: 

Pages

Subscribe to ug99