Genetics

Displaying 1 - 10 of 10

Capturing new genetic variation for rust resistance among the Watkins collection of pre- Green Revolution wheats - discovery to deployment and cloning

The Green Revolution involved the deployment of reduced height (Rht) genes to generate shorter wheat varieties with increased grain yields. It also contributed to a reduction in genetic diversity in the modern gene pool. Therefore, the pre- Green Revolution tall wheat landraces may provide a reservoir of genetic variation for economic traits such as rust resistance. Considering the breakdown of a suite of rust resistance genes through the emergence of currently predominant pathotypes (e.g. Ug99 and high temperature adapted isolates of the stripe rust pathogen) after three decades of Green Revolution, the discovery, characterisation and deployment of diverse sources of resistance remains a high priority. We have screened the Watkins wheat landrace collection and discovered, characterised and formally named a suite of new rust resistance genes including Yr47, Yr51, Yr57, Yr63 and Sr49. In addition, genotypes carrying potentially new genes for resistance to three rust pathogens are currently being investigated by students from seven nations representing three continents (Australia, Asia and Africa). Yr47, Yr51, Yr57 and Lr52 have been backcrossed into modern cultivars including the widely adapted cultivar PBW343 (Atilla) using markers developed in our research program. Development of triple rust resistant derivatives in modern wheat backgrounds is in progress. Stocks carrying Yr47, Yr51, Yr57 and Lr52 have been mutated to facilitate cloning of these loci for their eventual use in development of multi-gene cassettes for transformation.

Primary Author: 
Urmil Bansal
Primary Author Institution: 
The University of Sydney, Plant Breeding Institute, Australia
Poster or Plenary?: 
Plenary
BGRI Year: 
2015
Abstract Tags: 

Targeting stem rust resistance genes Sr32 and Sr1644 for cloning by mutagenesis and sequence capture

Resistance offers the best means of control of the cereal rusts, but must be strategically deployed so as to avoid exposure of single major genes, which have faltered so many times in the past. The pyramiding of multiple effective resistance genes is a strategy that has proven effective in a number of wheat production areas around the world. However, the process of incorporating multiple resistance genes into a single cultivar using standard breeding techniques is time consuming, laborious, and hampered by the problem of linkage drag. If a suite of effective resistance genes could be efficiently cloned and transferred into wheat as a cassette, it would accelerate the development of durably resistant varieties without the problem of linkage drag. Toward this end, we have developed a resistance gene cloning technology based on resistance gene enrichment sequencing (RenSeq) of EMS-derived mutant R gene alleles. As a proof of concept test, we successfully ‘re’-cloned the already characterized gene Sr33 and are now targeting the cloning of eight other effective resistance genes. For the identification of susceptible mutants for the cloning of Sr32 from Aegilops speltoides, we screened 1,109 M2 families with race TPMKC — as a surrogate for race TTKSK. Five susceptible M2 mutants were confirmed by progeny testing. These mutants were also susceptible to race TTKSK. For the population involving Sr1644 from Ae. sharonensis, 1,649 M2 families were screened, yielding 33 M2 families that appeared to segregate for susceptibility. Thirteen of 33 families were confirmed as bona fide susceptible mutants by progeny tests in the M3 generation. Identification of susceptible EMS mutants of Sr32 and Sr1644 suggests that the underlying resistance in these lines is conferred by single genes. We will report on progress to clone and characterize these genes using R gene exome capture and sequencing technology (RenSeq).

Primary Author: 
Wulff
Primary Author Institution: 
John Innes Centre, UK
Primary Author Email: 
Brande.Wulff@jic.ac.uk
Resistance Gene Tags: 
Poster or Plenary?: 
Poster
BGRI Year: 
2015
Abstract Tags: 

Evaluation of wild wheat introgression lines for rust resistance and yield

Wild species are sources and donors of many valuable traits for wheat improvement. We studied winter wheat introgression lines for productivity traits, disease resistance, and protein, globulin, gliadin and glutenin contents as well as grain mineral concentrations. Laboratory and field studies allowed selection in populations segregating for resistance to yellow rust and leaf rust. Lines 1718, 1721-9, 1721-4, 1675 and 1727 had the highest yields (6.2 t/ha) and stable leaf rust and stem rust resistances, but were still variable in response to stripe rust (30-80 S). Lines 1718 (Bezostaya 1 x Ae. cylindrica, genomes CCDD) and 1721 (Bezostaya 1 x T. militinae2 - 6, ABG) were resistant to stripe rust in trials at yield levels of 3.7-7.6 t/ha and from 5.7 to 8.2 t/ha, respectively. Line 1675 (Zhetisu x T. kiharae, ABGD) was resistant to all three rusts. Line 1676 (Steklovidnaya 24 x T. timopheevi, ABG) was resistant to LR and SR at a yield level of 8.3 t/ha, and 1671 (Zhetisu x T. militinae, ABG) was resistant to YR and SR at a yield level of 7.5 t/ha. Protein contents of the lines ranged from 13.6 to 18.4%, and grain mineral contents were above average.

Primary Author: 
Abugaliyeva
Primary Author Institution: 
Kazakh Research Institute of Agriculture and Plant Growing
Primary Author Email: 
kiz_abugalieva@mail.ru
Poster or Plenary?: 
Poster
BGRI Year: 
2015
Abstract Tags: 

Waste not, want not: The importance of being earnest about gene stewardship

The shortage of stem rust resistance genes effective against the Ug99 group prompted recent efforts to increase the number of resistance genes available to breeders. We are fortunate that many new and/or cytogenetically improved rust resistance genes are now being shared with the global wheat breeding community by their developers. If we are poor stewards of these resources, the new resistance genes will eventually be defeated, and we will waste the efforts and investments that have been made. However, if we are good stewards, we should have enough resistance to achieve sustainable, durable resistance. Stewardship can be defined as the careful and responsible management of something entrusted to one’s care. What should we do to safeguard the new resistance genes? Diversification of resistance is often suggested as a way to reduce the risk of large scale epidemics. Although diversification is generally a good idea, it cannot be at the expense of leaving new genes exposed and vulnerable. A durable combination (pyramid) must be designed so that the component genes protect each other. They should reduce the probability of simultaneous pathogen mutations to virulence and they should avoid stepwise erosion of the pyramid by preventing significant reproduction of any new race that is virulent on component genes. We need pyramids to be immune or nearly immune not only to current races, but to anticipated mutants. This objective should be achievable with three or more major genes or a combination of major and minor genes. Successful gene stewardship will depend on several things. On the technical side, we will need very good markers for each gene. Each breeding program will require strong genotyping support to assemble and then validate pyramids. Most importantly, successful stewardship will require that we organize our user community to cooperate more closely. We will need to decide which genes require special stewardship and which do not. Every user of the stewardship pool resource will need to participate in earnest. It only takes one cultivar with an unprotected gene to give the pathogen a stepping stone to greater virulence. As they say, a chain is only as strong as the weakest link

Primary Author: 
Robert Bowden
Primary Author Institution: 
USDA-ARS, Hard Winter Wheat Genetics Research Unit
Poster or Plenary?: 
Plenary
BGRI Year: 
2013
Abstract Tags: 

New tools for wheat genetics and breeding: Genome-wide analysis of SNP variation

Single nucleotide polymorphism (SNP) is one of the most broadly distributed types of molecular variation in a genome which, along with the availability of costand labor-effective genotyping platforms, make it the marker of choice for many crops. Our work is aimed at the development of a dense set of genetically mapped SNP markers for low-cost high-throughput genotyping of wheat germplasm. Next generation sequencing of normalized cDNA libraries was used for developing gene-associated SNPs in polyploid wheat. A total of 7.5 million 454 reads were generated from cDNA libraries of 10 wheat cultivars from US and Australia and processed for discovering SNPs using a bioinformatical pipeline specifically designed for variant discovery in polyploid transcriptomes. A total of 25,000 high-quality SNPs distributed among 14,500 EST contigs were identified. All these SNPs were validated by comparison with RNAseq data generated from an additional set of 17 U.S. and Australian cultivars. A total of 9,000 genome-wide common SNPs were selected for designing an Illumina iSelect assay. Preliminary testing showed that more than 95% of SNPs produce high-quality genotype calls with up to 70% being polymorphic in a diverse sample of U.S. and Australian cultivars with a minor allele frequency >0.05. The assay is currently being used for studying patterns of genetic diversity in a worldwide collection of wheat cultivars and for developing a high-density SNP map. A long term goal of this initiative is to advance wheat research and breeding by developing genetic and genomic tools for efficient analysis of agronomic traits using high-resolution linkage and association mapping and deploying SNP markers in breeding programs

Complete Poster or Paper: 
Primary Author: 
Eduard Akhunov
Primary Author Institution: 
Department of Plant Pathology, Kansas State University, USA
Co-authors: 
S. Chao, V. Catana, D. See, G. Brown-Guedira, A. Akhunova, J. Dubcovsky, C. Cavanagh, and M. Hayden
Poster or Plenary?: 
Plenary
BGRI Year: 
2011
Abstract Tags: 

Cracking the codes: genetic basis of nonhost resistance of barley to heterologous rust fungi

Full nonhost resistance can be defined as immunity, displayed by an entire plant species against all genotypes of a plant pathogen. The genetic basis of (non)host-status of plants is hard to study, since identification of the responsible genes would require interspecific crosses that suffer from sterility and abnormal segregation. There are some plant/potential pathogen combinations where only 10% or less of the accessions are at most moderately susceptible. These may be regarded as marginal host or near-nonhost, and can provide insights into the genes that determine whether a plant species is a host or a nonhost to a would-be pathogen. Barley (Hordeum vulgare L.) is a near-nonhost to several rust pathogens (Puccinia) of cereals and grasses. By crossing and selection we developed an experimental line, SusPtrit, with high susceptibility to at least nine different heterologous rust taxa such as the wheat and Agropyron leaf rusts (caused by P. triticina and P. persistens, respectively). On the basis of SusPtrit and several regular, fully resistant barley accessions, we developed mapping populations. We established that the near-nonhost resistance to heterologous rusts inherits polygenically (QTLs). The QTLs have different and overlapping specificities. In addition, an occasional R-gene is involved. In each population, different sets of loci were implicated in resistance. Very few resistance genes were common between the populations, suggesting a high redundancy in barley for resistance factors. Selected QTLs have been introduced into near-isogenic lines to be fine-mapped. Our results show that the barley- Puccinia system is ideal to investigate the genetics of host-status to specialized plant pathogens.

Complete Poster or Paper: 
Primary Author: 
Rients E. Niks
Primary Author Institution: 
Wageningen University, Laboratory of Plant Breeding
Co-authors: 
H. Jafary and T.C. Marce
Poster or Plenary?: 
Plenary
BGRI Year: 
2011
Abstract Tags: 

Genetic map of stem rust resistant gene Sr35 in T. monococcum

With the TTKS family of races virulent on most genes currently providing protection against stem rust worldwide, identifying, mapping, and deploying resistance genes effective against these races has become critical.  We present here a genetic map of Sr35.  Both parents of our diploid mapping population (DV92/G3116, 142 SSD lines) are resistant to TTKSK, but the population segregates for resistance to TRTTF (Yemen) and RKQQC (US). Race analysis suggests that G3116 carries Sr21 and DV92 both Sr21 and Sr35.  Resistance to TRTTF and RKQQC was mapped to a 6 cM interval on chromosome 3AmL between markers BF483299 and CJ656351.  This interval corresponds to a 178-kb region in Brachypodium which contains only 16 annotated genes and exhibits a small inversion (including 2 genes) and a putative insertion (2 genes) relative to rice and sorghum.  This map contains closely-linked markers to Sr35 and provides the initial step for this gene's positional cloning.

Primary Author: 
W. Zhang
Primary Author Institution: 
Department of Plant Sciences, University of California-Davis, USA
Resistance Gene Tags: 
Co-authors: 
M. Rouse, Z. Abate, Y. Jin, and J. Dubcovsky
Poster or Plenary?: 
Poster
BGRI Year: 
2010
Abstract Tags: 

Molecular-genetic dissection of rice nonhost resistance to wheat stem rust

Rust diseases remain a significant threat to the production of most cereals including wheat. New sources of resistance are continually sought by breeders to combat the emergence of new pathogen races. Rice is atypical in that it is an intensively grown cereal with no known rust pathogen. The resistance of rice to cereal rust diseases is referred to as nonhost resistance (NHR), a resistance mechanism that has only recently become genetically tractable. In this report, the mechanisms of rice NHR to wheat stem rust and other cereal rust diseases are explored and the potential for transferring this durable disease resistance to wheat is considered. Approaches being undertaken for the molecular-genetic dissection of rice NHR to rust are described.

Complete Poster or Paper: 
Primary Author: 
Michael Ayliffe
Primary Author Institution: 
CSIRO Plant Industry, Australia
Co-authors: 
Yue Jin, Brian Steffenson, Zhensheng Kang, Shiping Wang, and Hei Leung
Poster or Plenary?: 
Plenary
BGRI Year: 
2009
Abstract Tags: 

Cloned rust resistance genes and gene based molecular markers in wheat: Current status and future prospects

Two broad categories of resistance genes in wheat have been described. One group represents the so called seedling resistance or the ‘gene for gene’ class that often provides strong resistance to some but not all strains of a rust species. The other category referred to as adult plant resistance provide partial resistance that is expressed in adult plants during the critical grain filling stage of wheat development. A few seedling rust resistance genes have been cloned in wheat and other cereals and are predominantly from the nucleotide binding site/leucine rich repeat class which is associated with localized cell death at the pathogen entry site. Until recently, the molecular basis of race non-specific, partial and slow rusting adult plant resistance genes were unknown. Gene products that differ from known plant resistance genes were revealed from the recent cloning of the Yr18, Yr36 and Lr34 adult plant genes in wheat. The available range of diverse resistance gene sequences provide entry points for developing genebased markers and will facilitate selection of germplasm containing unique resistance gene combinations.

Complete Poster or Paper: 
Primary Author: 
Kota
Primary Author Institution: 
CSIRO Plant Industry, Australia
Co-authors: 
E.S. Lagudah, R. Mago, H. McFadden, P.K. Sambasivam, W. Spielmeyer, L. Tabe; B. Keller, S.G. Krattinger, L.L. Selter; S. Herrera-Foesel, J. Huerta-Espino, R.P. Singh; H. Bariana, R. Park, C. Wellings, S. Cloutier, and Y. Jin
Poster or Plenary?: 
Plenary
BGRI Year: 
2009
Abstract Tags: 

Cytogenetic manipulation to enhance the utility of alien resistance genes

Although many wild relatives in the Triticeae tribe have been exploited to transfer stem rust resistance genes to wheat, the derived germplasms have often not been immediately useful in wheat breeding programs. Too frequently, large chromosome segments surrounding desirable genes also harbor deleterious genes that result in unacceptable yield or quality. Recombination between chromosomes of wheat and chromosomes of distant relatives is very rare due to genetic restrictions on chromosome pairing in polyploid wheat. However, chromosome pairing can be manipulated by utilizing mutant stocks that relax this tight genetic control. The ph1b mutant produced by E.R. Sears over 30 years ago is an invaluable chromosome engineering tool, readily employed in the age of high-throughput molecular genetics. Shortened translocations have already been produced for stem rust resistance genes Sr26 and SrR using ph1b-induced homoeologous recombination. We are currently using induced-homoeologous recombination to reduce the sizes of alien chromosome segments surrounding TTKSK-effective genes Sr32, Sr37, Sr39, Sr40, Sr43, Sr47, SrTt3, Sr2S#1 and SrAeg5 to eliminate linkage drag putatively associated with these genes. Additional TTKSK-effective genes Sr44, SrHv6, SrAsp5, and SrAse3 were first targeted for development of compensating translocation stocks and then for shortening the size of each alien segment. Population development is also underway to characterize several potentially new sources of resistance.

Complete Poster or Paper: 
Primary Author: 
Mike Pumphrey
Primary Author Institution: 
Department of Crop and Soil Sciences, Washington State University, USA
Co-authors: 
I.S. Dundas, S.S. Xu, Y. Jin, J.D. Faris, X. Cai, W.X. Liu, L.L. Qi, B. Friebe, and B.S. Gill
Poster or Plenary?: 
Plenary
BGRI Year: 
2009
Abstract Tags: 
Subscribe to Genetics