Barberry

Displaying 1 - 4 of 4

Zhao
College of Plant Protection, Northwest A&F University, China
Co-authors: 
Yuanyuan Zhao, Shuxia Zuo, Dan Zheng, Lili Huang, Zhengshen Kang
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
geographic_area: 
Primary Author First Name: 
Jie

Wheat stripe rust, caused by basidiomycete fungus Puccinia striiformis f. sp. tritici (Pst), is a damaging disease worldwide. The recent discovery demonstrated the fungus depends on living wheat and aecial hosts, mainly barberry (Berberis) species, to complete its life cycle. In China, we determined that, under natural conditions, the sexual cycle of Pst occurs based on collections of Pst isolates from the diseased barberry in the past three years. However, no direct evidence to support whether barberry plays a role in spreading inoculums to wheat field to cause stripe rust was detected. In the present study, we recovered 103 Pst samples from natural-infected B. shensiana in the western Shaanxi in spring 2016, and also collected 107 Pst isolates from neighboring wheat fields. Phenotype and genotype of the two Pst populations were tested using a set of Chinese differential hosts for Pst and SSR markers, respectively. The phenotype tests showed that 57 race types produced from the barberry-derived Pst populations, consisting of 58 known races, such as CYR 34, CYR32, G22-14, and Su11-14-3, and 45 new races. Many of the two Pst populations shared the same race types. The genotype tests indicated the barberry-derived Pst population produced a rich genotype, obviously higher than the wheat-derived Pst populations. The seven same genotypes were found on 40 isolates of the former and 26 of the latter. Our results provide evidence to support that sexual cycle of Pst occurs regularly in nature in China and that barberry provides inoculums to neighboring wheat fields, triggering stripe rust infections in the spring. This could be a reason why the Chinese Pst populations represent extreme genetic diversity.

Tom Fetch
AAFC, Canada
Co-authors: 
M. S. Chaves, S. German, P. Olivera, P. Campos, Y. Jin, L. Szabo and J. Martinelli
Poster or Plenary?: 
Poster
BGRI Year: 
2014
Abstract Tags: 
geographic_area: 

The discovery of Ug99 stem rust with virulence on most widely grown wheat cultivars worldwide triggered substantial new research on host resistance genes and associated virulence dynamics in the pathogen. Ug99 is mutating and migrating, with eight variants presently known, and has spread throughout eastern Africa, across the Red Sea to Yemen and Iran, and to South Africa. It has been speculated that further movement of Ug99 spores from South Africa to South America could happen on prevailing winds that occur about eight days per month on average. While Ug99 is not yet present in South America, this is a critical entry point into the Western Hemisphere as demonstrated by introduction of soybean rust to Paraguay in 2001. Thus, work was initiated to engage countries in South America to participate in monitoring for its occurrence. Stem rust surveys are currently conducted in Argentina, Brazil, and Uruguay on a regular basis. Each country has a national agricultural institute with adequate to good capacity to perform pathotyping work, but have limitations due to inadequate greenhouse cooling. We will present the current virulence dynamics of Pgt in each country. In addition to surveys for rust, we searched for the presence of Berberis spp. in Brazil.  Berberis laurina was abundantly distributed in the Rio Grande du Sul state near the city of Caçapava. Leaves sampled in October displayed low to moderate aecial infections. Determination of the pathogen species infecting B. laurina is currently being determined by physiologic and molecular methods. 

Maria Newcomb
USDA-ARS Arid Land Agricultural Research Center
Co-authors: 
S. Sharma, D.B. Thapa, B.N. Mahto, A.K. Joshi, H.K. Manandhar, L.J. Szabo, and Y. Jin
Poster or Plenary?: 
Poster
BGRI Year: 
2013
Abstract Tags: 
geographic_area: 

Wheat contributes directly to food security and the national economy in Nepal. Of the rusts of wheat, stripe rust causes the most frequent and severe yield losses. Race changes can lead to damaging epidemics. To better understand factors that influence regional diversity of the stripe rust and stem rust pathogens, we surveyed rusts on barberry in 2012 and 2013. Nepal has a high diversity of barberry (30 species) and elevational habitats that extend the seasonal distributions of wheat and barberry. The greatest diversity occurs from 2,700 m and above, and distributions range from 1,200 to 4,500 m. We surveyed locations in all regions (central, eastern, western, and far-western) of the hill zone. Barberry was common between 1,300 and 1,800 m where wheat is grown. In the far-western region, barberry was found near all the wheat fields we surveyed. Between 1,300 and 1,800 m, Berberis asiatica is the most common species. B. aristata is present at the upper end of this range. Aecial infections on barberry occurred in patchy distributions in both 2012 and 2013. Collections of aecia on barberry were made at 5 locations and are being identified by inoculation studies using a range of grass hosts. Additionally, the rust samples are being evaluated by real-time PCR assays using species-specific ITS primer/probes for detection of Puccinia graminis or P. striiformis. Preliminary results for 32 single-aecia samples from 2012 were negative for P. graminis; 7 were positive for the P. striiformis complex. 

Yue Jin
USDA-ARS, Cereal Disease Laboratory
Poster or Plenary?: 
Plenary
BGRI Year: 
2010

The common barberry and several other Berberis spp. serve as the alternate hosts to two important rust pathogens of small grains and grasses, Puccinia graminis and P. striiformis. Barberry eradication has been practiced for centuries as a means to control stem rust. Diverse virulence variations have been observed in populations of P. graminis f. sp. tritici that were associated with susceptible barberries in North America. Barberry likely has played a role in generating new races of P. striiformis f. sp. tritici in some regions in the world. Several North American stem rust races, namely races 56, 15B and QCC, initially originated from barberry, were subsequently responsible for generating large-scale epidemics. Thus, sexual cycles on Berberis spp. may generate virulence combinations that could have serious consequences to cereal crop production.

Complete Poster or Paper: 
Subscribe to Barberry