APR

Displaying 1 - 3 of 3

Kosgey
University of Minnesota, St. Paul, MN 55108, U.S.A
Co-authors: 
Ruth Dill-Macky, Ruth Wanyera, Sridhar Bhavani, Worku Bulbula, Matthew Rouse
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
Primary Author First Name: 
Zennah

Stem rust caused by Puccinia graminis f.sp. tritici (Pgt) is one of the major constraints to wheat (Triticum aestivum) production worldwide. Pgt races have rapidly evolved in several geographical regions due to the deployment of single resistance genes resulting in boom and bust cycles, hence combinations of resistance genes through pyramiding ensures durability of resistance in wheat varieties. Spring wheat line CI14275 displayed high levels of field resistance to stem rust in Kenya and USA compared to the parents in its pedigree (Thatcher, Kenya Farmer & Lee). To understand the genetics of resistance in CI14275, 114 Recombinant Inbred lines (RILs) were developed from the cross CI14275/LMPG-6 and screened for seedling response to Pgt races TTTTF, TPMKC, TRTTF, TTKSK & RTQQC. Chi-square goodness of fit tests suggested one-gene, three-genes, and four-genes segregated for response to races TTTTF, TPMKC and RTQQC, respectively. The RILs were all susceptible to races TTKSK and TRTTF. CI14275 showed intermediate low infection types only against races TPMKC (23-) and TTTTF (1+3C). Field screening of the population was completed in Kenya, Ethiopia and St. Paul where CI14275 showed high levels of resistance TMR (Kenya), 5MS (Ethiopia) and 5RMR (St. Paul) against the prevalent races in the stem rust screening platforms. LMPG-6 displayed susceptible responses ranging from 70S-90S in the three locations. 90K wheat Single Nucleotide Polymorphism (SNP) marker platform will be used to genotype parents and the population.

Randhawa
International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico D.F., Mexico
Keywords: 
Co-authors: 
Ravi P. Singh, Caixia Lan, Bhoja R. Basnet, Sridhar Bhavani, Julio Huerta-Espino, Kerrie L. Forrest, Matthew J. Hayden
Poster or Plenary?: 
Poster
BGRI Year: 
2018
Abstract Tags: 
Primary Author First Name: 
Mandeep Singh

Common wheat Arula displays an acceptable level of adult plant resistance (APR) to stripe rust (YR), leaf rust (LR) and stem rust (SR) in Mexico, and to SR (Ug99 races) in Kenya. A recombinant inbred line (RIL) population developed from the cross of Arula with susceptible parent Apav was phenotyped under artificially created epidemics of the three rusts in 2014, 2015 and 2016 in Mexico and for SR during the off and main seasons of 2015 in Kenya. The RIL population and parents were genotyped using an iSelect 90K SNP array and 3 gene-linked markers (Sr2/Yr30-gwm533; Lr34/Yr18/Sr57-csLV34; Lr68-csGS), and a genetic map of 2,634 markers was constructed to locate the resistance loci. Two consistent QTL contributed by Arula were detected on chromosomes 3BS and 7DS, which corresponded to the previously known APR genes Sr2/Yr30 and Lr34/Yr18/Sr57, respectively. Sr2/Yr30 explained 1.1-14.7% and 41.0-61.5% of the phenotypic variation for YR and SR, respectively; whereas Lr34/Yr18/Sr57 accounted for 22.5-78.0%, 40.0-84.3% and 13.8-24.8% of the phenotypic variation for YR, LR and SR, respectively. Arula was also found to carry the positive allele for marker csGS closely linked to gene Lr68 on chromosome 7BL, although this gene was not detected using composite interval mapping. Our results show that RILs possessing both Sr2/Yr30 and Lr34/Yr18/Sr57 had significantly enhanced APR to all three rusts in field trials conducted in Mexico and Kenya. Strategic utilization of these two pleiotropic, multi-pathogen resistance genes with other minor genes is recommended to develop durable rust resistant wheat cultivars.

Sridhar Bhavani
CIMMYT-Kenya
Resistance Gene Tags: 
Co-authors: 
R. P. Singh, O. Argillier, J. Huerta-Espino, S. Singh, and P. Njau
Poster or Plenary?: 
Plenary
BGRI Year: 
2011
Abstract Tags: 

Durable resistance to wheat stem rust fungus can Be achieved by developing and deploying varieties that have race-nonspecific, adult plant resistance (APR) conferred by multiple minor, slow rusting genes. Wheat lines ‘Kingbird, ‘Kiritati’, ‘Huirivis#1’, ‘Juchi’, ‘Muu’ and ‘Pavon 76’ showed high levels of APR to Ug99 races of stem rust fungus when tested in Kenya. The F5 and F6 generation recombinant inbred line (RIL) populations developed from the crosses of moderately susceptible ‘PBW343’ with five resistant parents were used in mapping. The non-Sr26 fraction of the ‘Avocet’ x Pavon 76 RIL population, developed earlier for leaf rust and stripe rust resistance studies, was also included. Field phenotyping of the parents and RILs were conducted at Njoro, Kenya for at least two years with Ug99+Sr24 (TTKST) race under high stem rust pressures. The continuous variation of APR in each RIL population and genetic analyses indicated quantitative nature of resistance that was likely governed by 3 or 4 minor genes. Single and joint year analyses by Inclusive Composite Interval Mapping (ICIM) using informative DArT and/or SSR markers identified consistent APR QTLs on chromosomes 1AL, 3BS, 5BL, 7A and 7DS in Kingbird; 2D, 3BS, 5BL and 7DS in Kiritati; 2B, 3BS, 4A, 5BL and 6B in Juchi; 2B, 3BS, 7B in Huirivis#1; 2B, 3BS and 5BL in Muu; and 1BL, 3BS, 5A and 6B in Pavon 76. QTLs on each genomic regions explained 10- 46% of the phenotypic variation for APR. Pseudo-black chaff phenotype associated with APR gene Sr2 on chromosome 3BS in all six resistant parents and identification of an APR QTL in the same region in all mapping populations confirmed the role of Sr2 in reducing stem rust severity. The 1BL QTL in Pavon 76 was in the same region where pleiotropic APR gene Lr46/Yr29/Pm39 is located. Similarly a 7DS QTL in Kingbird and Huirivis#1 was in the chromosomal region where pleiotropic APR gene Lr34/Yr18/Pm38 is located. These results indicate that the above two pleiotropic resistance genes confer APR to stem rust in addition to leaf rust, yellow rust and powdery mildew. Further studies are underway to saturate the genomic regions harboring new APR QTLs with additional molecular markers.

Complete Poster or Paper: 
Subscribe to APR