All BGRI Abstracts

Displaying 81 - 90 of 415 records | 9 of 42 pages

Building upon past successes for a continued impact on production and food security through breeding high yielding climate change resilient durum wheat varieties

BGRI 2018 Poster Abstract
Mohamed Salah Gharbi National Institute of Agriculture Research, Tunisia

Meeting food security challenges is a high priority in many developing countries. North African countries are among those with the highest per capita wheat consumption in the world and chronic grain deficits. Climate change scenarios predict decrease of rainfall and increase of temperature with negative impact on crop production and hence food security. Along with adoption of modern technologies, breeding higher yielding and more climate change resilient wheat varieties is widely seen as a tool that can sustain past yield gains and food production increases. Durum wheat production in Tunisia greatly benefited from the green revolution ingredients. Continued breeding lead to replacement of the early semi dwarf varieties with higher yielding, better disease resistant and more drought tolerant ones that have positively impacted yield at farmer and national level. Monitoring gains from increased yield potential and resistance to the most damaging foliar diseases, mainly septoria leaf blotch, leaf rust and stripe rust, showed that grain yield of recently released varieties is up to four times that of the tall late maturing landraces grown before the 1970's and up to 2.5 times that of varieties of the early years of the green revolution. Chlorophyll content, green leaf duration, deeper root development from diverse donors including wild wheat relatives and grain yield are being integrated in the breeding program for the selection of more drought and heat stress tolerant durum cultivars

Tags:

Marker and haplotype-based association mapping and genomic prediction to unravel the complex genetic architecture of grain yield and yield stability in spring bread wheat

BGRI 2018 Poster Abstract
Deepmala Sehgal CIMMYT
Umesh Rosyara, Suchismita Mondal, Ravi Singh, Susanne Dreisigacker

Grain yield is the most important economic trait in wheat breeding. The detailed understanding of the genetic architecture of grain yield is crucial and the determining factor to optimize genomics-assisted selection strategies in wheat. First, we performed a marker and haplotype-based genome-wide association study (GWAS) for grain yield (GY) and yield stability coefficient (Pi) on 4,302 advanced breeding lines from five CIMMYT international bread wheat trails grown in multiple (optimally irrigated and stress) environments. All lines were genotyped using genotyping-by-sequencing. A haplotype map was built based on linkage disequilibrium between markers. Twenty-nine markers and 16 haplotypes were associated with GY and Pi across two and three germplasm trials with allelic effects ranging from 2 to 11% across environments. Secondly, we performed genomic prediction, testing eight different prediction models incorporating single markers (base model), haplotypes, epistatic interactions, and significant markers/haplotypes identified in GWAS. Initial results show that by including haplotypes and epistatic interactions among haplotypes (main effect and genome-wide), prediction accuracies range between 0.33-0.49 for GY, a 3 to 22.5% improvement over the base model. Despite the identification of significant marker/haplotype trait associations across traits and environments in GWAS, accounting for these markers in genomic prediction does not improve the prediction models. Our results suggest that the haplotype-based approach can increase prediction ability, but that the knowledge of the genetic architecture of grain yield might not have significant consequence on genomic-assisted selection.

Tags:

Existence of divergent lineages, virulence phenotypes and DNA methylation in the Canadian Puccinia striiformis population

BGRI 2018 Poster Abstract
Gurcharn Singh Brar Crop Development Centre/Department of Plant Science, University of Saskatchewan, Saskatoon, Canada
Sajid Ali, Dinah Qutob, Steve Ambrose, Ron Maclachlan, Kun Lou, Curtis Pozniak, Yong-Bi Fu, Andrew Sharpe, Randy Kutcher

Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is one of the most important pathogens of wheat. Attempts have been made in the past to characterize the worldwide genetic structure of Pst populations, excluding Canada. Characterization of 59 isolates identified 33 races with three most common races representing half of the population and subtle differences in races of eastern and western prairies. For molecular characterization, 48 isolates were sequenced to obtain SNPs and genotyped with Pst-specific SSR markers. Isolates that were suspected of recombination based on SNP data were examined for their telia production ability as a proxy for sexual recombination. The study revealed that the majority of the population was clonal, however, not exclusively clonal, with the existence of four genetic lineages. Two lineages previously reported were identified: PstS0, representing an old northwestern-European and PstS1, an invasive warmer-temperature adapted lineage. Additionally, two new lineages, PstPr and PstS1-related, were detected that have not been reported previously. The PstPr and PstS1-related lineages produced more telia than the other lineages and had double the number of unique recombination events compared to PstS0 and PstS1. PstPr was concluded to be a sexual recombinant and an exotic incursion, which was closely associated with PstS5, PstS7 (Warrior), and PstS8 (Kranich) lineages, all of which arose by sexual recombination in the center of diversity - the Himalayan region. The total phenotypic variation in the population could not be explained solely by molecular genotypes, and a hypothesis on existence of epigenetic machinery in the Pst genome was tested. Homologs of the DNMTases class (DNMT1) were identified, providing compelling evidence of a role for DNA methylation. As a first report of DNA methylation, an average of ~5%, 5-methyl cytosine (5-hmC) in the Puccinia epigenome indicated the possibility of epigenetic regulation, which merits further investigation.

Tags:

Harnessing the predictive power of epidemiological modelling for wheat yellow rust disease

BGRI 2018 Poster Abstract
Vanessa Bueno-Sancho John Innes Centre
Christopher,Judge, Francesca, Minter, Nik, Cunniffe, Richard, Morris, Diane, Saunders, , , , , , , , , , , , , , , , , , , ,

Wheat yellow rust is a disease caused by the fungus Puccinia striiformis f. sp tritici (PST) that is a significant threat to wheat production worldwide. Recently, a novel approach called "Field Pathogenomics" was developed that allows acquisition of genotypic data from field samples of PST-infected wheat. This has enabled us to study the re-emergence of this pathogen in the UK and understand the different races that form the current PST population. However, the dynamics of pathogen transmission and dispersal still remain unknown and understanding this is essential for designing effective surveillance. The objective of this project is to develop a spatially-explicit model for the spread of PST that can contribute to better management of the disease and be used as a warning system for wheat yellow rust infection in the UK. The first aim is to study how PST spreads at the field level and determine whether there are differences between PST races in terms of disease dynamics. To this end, a set of markers have been designed that can be used to genotype field-collected isolates and determine which race they belong to. Field trials were also undertaken across the UK using wheat varieties that are known to be susceptible to the disease, with PST-infected wheat samples collected during the 2015-2016 and 2016-2017 seasons. These samples will be genotyped to study the prevalence of different PST races and determine whether PST genotypes identified early in the season are predictive of dominant genotypes found later in the season. Understanding PST dynamics within a field is key to build an epidemiological model that can predict how this disease behaves. This would improve disease management, targeting of chemical sprays and optimize pathogen surveillance.

Tags:

Breeding of high yielding, rusts resistance and Zn-enriched wheat varieties for different agro-ecological zones of Pakistan

BGRI 2018 Poster Abstract
Maqsood Qamar Wheat Program, National Agricultural Research Center (NARC) Islamabad
Sikander Khan Tanveer, Muhammad Sohail, Muhammad Shahzad Ahmed, Sayed H. Abbass, Sundas Wagar, Atiq Rattu, Muhammad Imtiaz

Wheat plays a vital role in multifaceted farming system of Pakistan. Like other many other countries, Pakistan's sustainable wheat production is also continuously threatened by a number of biotic and abiotic stresses. Among the biotic stresses, three rust diseases of wheat have been the most devastating. Stem rust was effectively controlled with adoption of the semi-dwarf spring wheats of the Green Revolution. However, the threat of the evolution of Ug99 race of stem rust in East Africa and its migration to Iran cannot be neglected. The Chance of of Ug99 migrating from Iran into Pakistan, coupled with the presence of dangerous new races of stripe and leaf rusts invites enormous efforts for development of rust resistant varieties for sustainable production of the wheat in the country. In this regard the Wheat Program, NARC, Pakistan initiated an intensive breeding program with financial and technical support of USDA and CIMMYT. Diverse sources of resistance to the three rusts particularly to the stem rust race Ug99 were introduced from CIMMYT. Through the rigorous selection procedure, four rusts resistant wheat varieties (NARC 2011, Pakistan 2013, Zincol 2016 and Borlaug 2016) have been released. These varieties are also resistant to Ug99. The varieties i.e. NARC 2011, Borlaug 2016 and Zincol 2016 are performing well in irrigated areas whereas Pakistan 2013 is suitable for rainfed conditions. The variety Zincol 2016 has high Zn content (35 ppm) in grain as compared to national standard check variety (25 ppm). These varieties are not only higher yielding but also possess good grain quality and other desirable traits. A considerable quantity of seed of the varieties is already present in the national seed system and will reduce the risk of Ug99 threat.

Tags:

Genetics of leaf rust and stripe rust resistance in spring wheat cultivar 'Kijil'

BGRI 2018 Poster Abstract
Maricarmen Sandoval-Sánchez 1,3 Colegio de Postgraduados-Fitosanidad, Campus Montecillo, Texcoco, 56230, Estado de M?xico, M?xico
Julio Huerta-Espino, Ravi P. Singh, Caixia Lan, Sridhar Bhavani, Reyna I. Rojas-Martínez, Ignacio Benitez-Riquelme, Cristian Nava-Díaz, Mandeep Singh Randhawa

Leaf rust and stripe rust caused by the fungi Puccinia triticina and P. striiformis f. sp. tritici, respectively, are important diseases of wheat and represent a significant threat in most wheat producing regions worldwide. Growing resistant varieties and the identification and characterization of new sources of resistance are necessary to combat the threat from the evolving pathogen population. Bread wheat (Triticum aestivum L.) line 'Kijil' developed at CIMMYT showed adult plant resistance (APR) to leaf rust (LR) and stripe rust (YR). The genetic basis of the resistance was investigated using 198 recombinant inbred lines (RILs) derived from the cross of susceptible Apav#1 and resistant Kijil. Field phenotyping of parents and RILs were conducted at El Batón, Toluca and Ciudad Obregon, Mexico during 2016 and 2017. Pearson correlation coeffcients (P< 0.0001) were high for disease severities between two years of evaluations: LR (r= 0.90) and YR (r= 0.83). Correlations (r= 0.30-0.76) were also significant between LR and YR in all environments. Genetic analyses indicated that 3 to 5 genes of additive effects governed resistance to both rusts. RILs carrying the pleiotropic APR gene Lr46/Yr29/Sr58 showed 23 and 41% of disease severity for LR and YR respectively, whereas lines lacking it had 55 and 78% severities. RILs positive for Sr2/Yr30 showed 66% YR severity, whereas those negative displayed 78%. In addition, lines carrying the race-specific gene Yr17/Sr38 showed 28% YR severity in contrast to non-carriers that displayed 78% severity. We conclude that Kijil possesses a complex nature of resistance.

Tags:

New QTL for leaf rust and stripe rust resistance in four bread wheat and two durum wheat mapping populations

BGRI 2018 Poster Abstract
Caixia Lan CIMMYT
Ravi,Singh, Julio, Huerta-Espino, Mandeep, Randhawa, , , , , , , , , , , , , , , , , , , , , , , ,

Wheat leaf rust (LR) and stripe rust (YR), caused by the air-borne fungi Puccinia triticina (Pt) and Puccinia striiformis f. sp. tritici (Pst), respectively, are considered the primary biotic threats to bread wheat and durum wheat production globally. Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by these diseases. Bread wheat lines Francolin #1, Kenya Kongoni, Kundan and Sujata, and CIMMYT-derived durum wheat lines Bairds and Dunkler display an adequate level of adult plant resistance (APR) to both leaf rust and stripe rust in Mexican field environments. Six recombinant inbred line (RIL) populations developed from crosses Avocet/Francolin #1, Avocet/Kenya Kongoni, Avocet/Kundan, Avocet/Sujata, Atred#1/Bairds and Atred#1/Dunkler were phenotyped for leaf rust response at Ciudad Obregon, Mexico, and the bread wheat populations for stripe rust response at Toluca for under artificial inoculations for multiple seasons. The RIL populations and their parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. Known pleotropic APR genes Lr46/Yr29 mapped in all of six populations, and explained 7.4-65.1% and 7.7-66.1% severity variations for LR and YR across different bread wheat populations and accounted for 12.4-60.8% of LR severity variations over two durum wheat populations. In addition, several new APR loci identified on chromosomes 1AS, 1DS, 2BS, 2BL, 3D and 7BL in bread wheat and QTL on chromosome 6BL in durum wheat. Among these loci, QTL on chromosomes 1AS, 3D and 7BL might be represent new co-located/pleotropic loci conferring APR to LR and YR. RILs combining these APR loci can be used as sources of complex APR in both bread wheat and durum wheat breeding. In addition, the closely linked single nucleotide polymorphism (SNP) markers have been converted into breeder-friendly kompetitive allele specific PCR (KASP) markers and their diagnostic verified.

Tags:

Identifing candidate genes corresponding to Yr6 in wheat stripe rust by resequencing a population acquired from selfing an isola

BGRI 2018 Poster Abstract
Gangming Zhan State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University
Yuan Tian, Yan Meng, Hengbo Ma, Lili Huang, Zhensheng Kang

Stripe rust, caused by Puccinia striiformis Westend f.sp. tritici, is currently one of the most prevalent and damaging disease on wheat. Up to now, some genes in wheat which are resistant to wheat stripe rust have been cloned, but little is known about the corresponding avirulence gene according to the gene-for-gene hypothesis. A population containing 118 progeny isolates population acquired by selfing an isolate, PL17-7, with virulence to Yr26 was derived. Seventy-two progeny isolates were different in genotype depending on 92 simple sequence repeat (SSR) markers. The progeny population segregated for avirulence to Yr6 at one locus (3 avirulent :1 virulent ratio). The parental isolate and 72 of 118 progeny isolates were resequenced to find candidate avirulence genes corresponding to Yr6. Overall, 7.6 million reads per sample were obtained and mapped to the draft genome of a Chinese Pst isolate CY32. The median depth of coverage was 63.6 fold. For each isolate, between 97.6% and 98.1% of the sequence reads were mapped to the race CY32 genome, which covered between 87.3% and 95.4% of the reference genome bases. An average of 97357 single nucleotide polymorphisms (SNP) per isolate was found, which covered 8.1% of the reference genome. Different SNPs and Indels were found when isolates virulent and avirulent to wheat cultivar containing Yr6 were grouped into two groups. Though screening discrepant SNP and indel in these two groups, candidate avirulence genes corresponding to Yr6 may be found.

Tags:

Accelerated Cloning and Characterization of Adult Plant Resistance Genes in Wheat

BGRI 2018 Poster Abstract
Sreya Ghosh John Innes Centre
Burkhard,Steuernagel, Caixia, Lan, Miroslava, Karafi?tov?, Ksenia, Krasileva, Jaroslav, Dole?el, Evans, Lagudah, Ravi, Singh, Brande, Wulff, , , , , , , , , , , , , ,

Adult Plant Resistance (APR) genes are broad-spectrum, partial-resistance genes that have the potential to contribute to sustainable control of wheat rust diseases. However, their isolation and characterization are complicated by the lack of precise molecular markers required for their identification, and therefore their use in plant breeding programs has been limited. Recent developments including the falling cost of sequencing and the increasing use of sequence capture methods to reduce genome complexity have enabled previously intractable methods such as mutational genomics to clone genes in wheat. Despite their increasing ease of use, many of these approaches require prior knowledge of the gene space and, in some cases, the gene family of the target gene to be cloned. As the APRs cloned so far do not belong to any common gene family, it is not possible to use general features of these identified APRs to conduct biased searches for novel APRs. This project aims to use an unbiased gene isolation technique called MutChromSeq, which combines chromosome flow-sorting and mutational genomics, and is independent of fine mapping, to rapidly clone the recently discovered APR gene Lr68 (Leaf Rust 68). Cloning APRs allows breeders to trace genes cheaply and quickly using gene-specific markers, enabling them to build effective and durable resistance gene pyramids. It also allows us to elucidate any common mechanism of action they have, helping researchers and breeders understand better the basis of their durable resistance. At the same time, the generation time of wheat has become one of the major limiting factors for the response time of breeders to rust epidemics. Thus, this project also aims to combine marker-assisted selection with accelerated generation advancement ('speed breeding') for rapid germplasm structuring and field performance evaluation.

Tags:

Genetic characterization of wheat for adult plant response against rust infestation under water deficit conditions

BGRI 2018 Poster Abstract
Rahil Shahzad Ayub Agricultural Research Institute, Faisalabad
Shakra Jamil

Different biotic and abiotic stresses are hampering wheat yield across different geographic regions. Among biotic stresses, wheat rusts are principal cause of yield reduction. Whereas among abiotic stresses, drought is the principle cause of reduction in growth and lowering yield potential. So developing rust resistance and drought tolerance in wheat germplasm is needed, which requires assessment of genetic potential of current cultivars against these stresses to identify variation among existing germplasm. Screening of genotypes under naturally prevailing races of rust species is the better and inexpensive approach. In the present study 65 genotypes including five checks (AARI-11, Chakwal- 50, Aas- 11, Morocco and Galaxy-13) were evaluated for adult plant response to wheat rusts and water deficit conditions. Experimental material was planted in four blocks each having new entries along with repetition of five checks in augmented design. Data was recorded on morphological traits including plant height, peduncle length, spike length, productive tillers per meter, flag leaf area, number of spikelet per spike, grains per spike, single head weight, 1000 grain weight, days to maturity and grain yield per acre. Significant variation was observed among genotypes for all the studied traits. On the basis of performance G39 and G36 were better than commercial drought check Chakwal-50 in almost all the traits. However rust screening under natural rust infestation revealed that although Morocco showed susceptible (S) response yet only six genotypes were susceptible to yellow rust whereas all others were resistant. In case of leaf rust 29 were completely resistance, 25 were moderately resistant, seven were moderately susceptible and only four were completely susceptible to currently active races of leaf rust. However, in the case of stem rust, 61 genotypes showed complete resistance to stem rust, two showed moderately resistance and two were moderately susceptible. Information obtained from this study would be favorable for breeding rust resistant and drought tolerant cultivars.

Tags:

Pages