All BGRI Abstracts

Displaying 81 - 90 of 417 records | 9 of 42 pages

New QTL for leaf rust and stripe rust resistance in four bread wheat and two durum wheat mapping populations

BGRI 2018 Poster Abstract
Caixia Lan CIMMYT
Ravi,Singh, Julio, Huerta-Espino, Mandeep, Randhawa, , , , , , , , , , , , , , , , , , , , , , , ,

Wheat leaf rust (LR) and stripe rust (YR), caused by the air-borne fungi Puccinia triticina (Pt) and Puccinia striiformis f. sp. tritici (Pst), respectively, are considered the primary biotic threats to bread wheat and durum wheat production globally. Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by these diseases. Bread wheat lines Francolin #1, Kenya Kongoni, Kundan and Sujata, and CIMMYT-derived durum wheat lines Bairds and Dunkler display an adequate level of adult plant resistance (APR) to both leaf rust and stripe rust in Mexican field environments. Six recombinant inbred line (RIL) populations developed from crosses Avocet/Francolin #1, Avocet/Kenya Kongoni, Avocet/Kundan, Avocet/Sujata, Atred#1/Bairds and Atred#1/Dunkler were phenotyped for leaf rust response at Ciudad Obregon, Mexico, and the bread wheat populations for stripe rust response at Toluca for under artificial inoculations for multiple seasons. The RIL populations and their parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. Known pleotropic APR genes Lr46/Yr29 mapped in all of six populations, and explained 7.4-65.1% and 7.7-66.1% severity variations for LR and YR across different bread wheat populations and accounted for 12.4-60.8% of LR severity variations over two durum wheat populations. In addition, several new APR loci identified on chromosomes 1AS, 1DS, 2BS, 2BL, 3D and 7BL in bread wheat and QTL on chromosome 6BL in durum wheat. Among these loci, QTL on chromosomes 1AS, 3D and 7BL might be represent new co-located/pleotropic loci conferring APR to LR and YR. RILs combining these APR loci can be used as sources of complex APR in both bread wheat and durum wheat breeding. In addition, the closely linked single nucleotide polymorphism (SNP) markers have been converted into breeder-friendly kompetitive allele specific PCR (KASP) markers and their diagnostic verified.

Tags:

GENDER DIFFENCES IN ADOPTION OF IMPROVED WHEAT VARIETY TECHNOLOGY IN KENYA.

BGRI 2018 Poster Abstract
ANNE GICHANGI KENYA AGRICULTURAL AND LIVESTOCK RESEARCH ORGANIZATION (KALRO)
GODWIN,MACHARIA, BERNICE, NGINA, , , , , , , , , , , , , , , , , , , , , , , , , ,

Studies have shown that women farmers are worse off than the male counterparts in terms of adoption of improved varietal technology and hence they experience low productivity. This technology adoption gender gap affects agricultural development considering that women in Kenya play a significant role in agriculture and food production. The link between gender and adoption is likely to vary across cultures and over time. The hypothesis of significant gender differences in access to and use of productive resources and adoption of improved wheat varieties was tested. Based on bivariate analysis, significant differences in access and use of productive resources between men and women farmers were observed. Men were more likely to access credit, extension services, own and cultivate more lands compared to women. Similarly, women in female-headed households were less likely to access the productive resources compared to women in male-headed households. The factors that affect adoption of improved wheat varieties among smallholder farmers were analysed with a specific focus on women. In contrast to the conventional model of using gender of the household head, gender and plot levels analyses were conducted. The results show that the gender of the field owner had a negative effect on adoption of improved wheat varieties. This indicates that, men were more likely to adopt improved wheat varieties, compared to women farmers. Moreover, the level of education of the household head, household size, and access to credit and extension services were observed to significantly increase the likelihood of farmers adopting improved wheat varieties. In the same framework, female farmers in male-headed households who had access to credit were more likely to adopt improved wheat varieties while there was greater probability of adoption of improved wheat varieties among female farmers in female-headed households who had access to agriculture extension and belonged to a farmer organization

Tags:

Genome-Wide Association Study (GWAS) of resistance to stem and stripe (yellow) rust in Iranian wheat cultivars and elite lines

BGRI 2018 Poster Abstract
Muhammad Massub Tehseen Department of Field Crops, Ege University, Izmir, Turkey
Kumarse,Nazari, Mehran, Patpour, Davinder, Singh, Aladdin, Hamwieh, , , , , , , , , , , , , , , , , , , , , ,

Rust diseases in wheat are the major threat to wheat production and yield gains. The breakdown in resistance of certain major genes and new emerging aggressive races of rusts are causing serious concerns in all main wheat growing areas of the world. Therefore, it is the need of the hour to search for new sources of resistance genes or QTL's for effective utilization in future breeding programs. In total 100 wheat genotypes were evaluated for seedling and adult-plant resistance to stem rust races TKTTF and TTKSK at Tel Hadya-Syria, and Njoro-Kenya, and Kelardasht-Iran. Evaluation to Yr27 virulent stripe rust race was carried out at Tel Hadya and Terbol-Lebanon research stations. In this study we used genome wide association studies (GWAS) to identify markers or QTLs linked to stem rust and stripe rust races using Diversity Arrays Technology (DArT?) in selected 35 Iranian wheat genotypes. The association of markers and phenotypes was carried out using a unified mixed-model approach (MLM) as implemented in the genome association and prediction integrated tool (GAPIT). Out of 3,072 markers, 986 were polymorphic and used for marker trait associations. A total of 44 DArT markers were identified to be significantly (p<=0.01) associated with studied traits in 16 genomic regions 1A, 1B, 2A, 4A, 6A, 7A, 1B.1R, 2B, 3B, 4B, 5B, 5B.7B, 6B, 7D and an unknown region. Among associated markers, 34 were linked to stem and nine to stripe rust. They were found on 16 genomic regions on chromosome arms 1A, 1B, 2A, 4A, 6A, 7A, 1B.1R, 2B, 3B, 4B, 5B, 5B.7B, 6B, 7D and an unknown region. Associated markers explained phenotypic variation ranging from 21 to 65%. In addition to validation of previously identified genes, this study revealed new QTL's linked to stem and stripe rust which will assist breeders to develop new resistant varieties.

Tags:

Resistance to race TKTTF of Puccinia graminis f. sp. tritici with virulence to SrTmp gene in Ethiopian bread wheat lines

BGRI 2018 Poster Abstract
Worku Bulbula Ethiopian Institute of Agricultural Research
Ashenafi,Gemechu, Habtamu, Tesfaye, Zerihun, Tadesse, Habtemariam, Zegeye, Netsanet, Bacha, Ayele, Badebo, Bekele, Abeyo, Pablo, Olivera, Matthew, Rouse, , , , , , , , , , , ,

Puccinia graminis f. sp. tritici (Pgt) is the major wheat production constraint in Ethiopia causing recurrent epidemics that resulted in the withdrawal of widely grown wheat cultivars from production. Among the current Pgt races detected in Ethiopia, TKTTF is the most frequent and has caused a severe epidemic in the south wheat growing regions (Bale and Arsi) after its first detection in 2012. Therefore, to avert the current situation, identifying sources of resistance to race TKTTF in breeding germplasm is a top priority to the National Wheat Breeding Program. Hence, 82 promising bread wheat lines including five check cultivars were evaluated in Debre Zeit in a TKTTF single race nursery for three consecutive seasons, 2014-2016. Ethiopian bread wheat cultivar Digalu was used as a spreader row and was inoculated using a single isolate of race TKTTF at different growth stages. The nursery was bounded by oat to reduce interference with any other stem rust race. The 82 lines were tested in the greenhouse at Cereal Disease Laboratory and were also tested with known diagnostic molecular markers. Twenty-nine lines displayed low levels of terminal stem rust severity in the field and low coefficient of infections. Fourty-one lines were resistant to race TKTTF at the seedling stage. Bread wheat lines resistant to TKTTF are valuable sources of resistance that can be deployed in wheat growing regions of Ethiopia prone to stem rust.

Tags:

Incorporation of rust resistance (especially stem rust race Ug99) from rice to wheat through Wheat ? rice crossing

BGRI 2018 Poster Abstract
Javed Ahmad Wheat Research Institute, AARI, Faisalabad, Pakistan
Ghulam Mahboob,Subhani, Makhdoom, Hussain, Mehvish, Makhdoom, , , , , , , , , , , , , , , , , , , , , , , ,

Rust is the single largest factor limiting wheat production in Pakistan. According to the FAO reports, countries in the predicted immediate pathway of Ug99 grow more than 65 million hectares of wheat, accounting for about 25% of global wheat harvest.
Rice, a member of the same family (Poaceae) is not attacked by any rusts. Wheat, an allo-hexaploid is responsive for wide crossing. It has previously been successfully crossed with its several wild relatives and different other crop species like corn, pearl millet etc. Based on the above facts wheat ? wild rice crossing has been attempted to incorporate rust resistance from rice to wheat. Successful crosses were made under in-vitro conditions. Surviving plantlets developed from these crosses were assayed for any genetic material introgressed from rice. Different cytological / molecular techniques were used to detect the introgression (Squash preparations from root tips, FISH, GISH, SSR etc.). Two hundred and fifty primers specific to rice chromatin were used to look for the introgression of rice chromatin into hybrids. Seven primers amplified the fragments in hybrids indicating the possible introgression of rice chromatin in wheat x rice hybrids but in-situ hybridization didn't confirm that introgression. So further testing of these hybrids is needed.

Tags:

Adaptability of Wheat Varieties in Strongly Acidic Soils of Sylhet in Search of Low pH Tolerant Wheat Variety

BGRI 2018 Poster Abstract
Ataur Rahman Wheat Research Centre, Bangladesh Agricultural Research Institute
,, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

The soils of the entire Sylhet region of Bangladesh are strongly acidic where lands remain fallow during winter season due to scarcity of irrigation water required for rice cultivation. There is a scope of wheat expansion in this region as the water requirement of wheat is less than Boro rice. Field experimens were carried out at South-Surma, Sylhet, in 2012-13 and at FSRD site Jalalpur, Sylhet in 2013-14, in collaboration of WRC and OFRD. BARI examined the response of seven wheat varieties at two levels of lime in split-plot design where lime was applied in main plots and different wheat varieties were grown in sub-plots. The seeds were sown on December 05, 2012 and November 30, 2013 for the growing season of 2012-13 and 2013-14, respectively. The wheat varieties used in this study were Shatabdi, Sufi, Sourav, Bijoy, Prodip, BARI GOM 25 and BARI GOM 26. The index of relative performance of each variety in comparison to mean yield of all varieties under the contrast conditions of liming and non-liming was estimated to determine relative adaptability of wheat variety under experimental soil conditions. The result indicated that most of the yield components viz. spikes/m2, thousand grain weight and grain yield of wheat were significantly improved by liming for both the years and locations. There were variations in lime response among the wheat varieties. The index of relative adaptability (IRA%) for yield of BARI GOM 26 and Bijoy was more than 100% for both the years. The result indicated that these two wheat varieties are relatively tolerant to low pH and could be adapted in acidic soil of Sylhet.

Tags:

Characterization of a diverse South American wheat panel to identify new leaf rust and stem rust resistance genes

BGRI 2018 Poster Abstract
Paula Silva INIA Uruguay and Dep. Plant Pathology, Kansas State University, US
Pierina Clerici, Richard Garcia, Fernando Pereira, Noelia Perez, Martin Quincke, Silvia German

Leaf rust (LR) and stem rust (SR) are threats to global wheat production and new races frequently overcome resistance genes deployed in wheat cultivars. Identification of new sources of resistance is a major goal for many pre-breeding programs. The objective of this study was to investigate the genetic basis of resistance to LR and SR in a diverse South American wheat panel. Molecular markers for known resistance genes and GBS were used to dissect genetic components. The wheat panel of 122 lines was characterized under field conditions at La Estanzuela Research Station, Uruguay, for disease severity (DS) to LR (2014 and 2015) and SR (2015), and LTN (leaf tip necrosis). Final DS for LR ranged between 0 and 95%, with mean values of 40% (2014) and 46% (2015). For SR, final DS ranged between 0 and 50%, with a mean value of 5%. The frequencies of positive diagnostic resistance markers among accessions were 20.5% for Lr34/Sr57, 6.6% for Lr68, 3.3% for Sr2/Lr27, 23% for Sr31/Lr26, 20.5% for Sr24/Lr24, 9.4% for Sr25/Lr19, and 0% for Sr39/Lr35. Of all the LR/SR resistance genes, only the effect of Lr68 was significant when predicting LR DS. Seventeen lines were identified with combinations of two genes, but no combination conferred a significantly improved level of resistance. Preliminary GWAS analysis for LR response on a subset of 86 lines revealed several QTLs, with a major QTL explained by Lr68. Lines with good levels of resistance to LR and SR, high expression of LTN, and absence of markers for the studied resistance genes were identified, indicating that there are other genes involved in resistance. Future research involving the testing of additional molecular markers for other known resistance genes, and a deeper GWAS analysis, will provide further information about the resistance genes present in this wheat panel.

Tags:

Virulence of Puccinia striiformis f. sp. tritici Population to 18 NILs in Yunnan Province, China

BGRI 2018 Poster Abstract
Mingju Li Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, China
Xianming,Chen, Anmin, Wan, Jiasheng, Chen, Mingliang, Ding, , , , , , , , , , , , , , , , , , , , , ,

Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most destructive disease of wheat worldwide. Breeding and planting resistant cultivars is the most economic, effective, as well as environmental methods to control the disease. Yunnan is a severe epidemic zone in China, which provides new incursions for other parts of China. Study on virulence of the Pst population and effectiveness of resistance genes, will provide information for breeding and rational use of resistance genes. One hundred and thirty-six136 isolates collected from 9 regions of Yunnan were tested using a set of 18 Yr NILs with genes Yr1, Yr5, Yr6, Yr7, Yr8, Yr9, Yr10, Yr15, Yr17, Yr24, Yr27, Yr32, Yr43, Yr44, YrSP, YrTr1, YrExp2, YrTyTye. Stripe rust races were named by octal code. The results showed that the Pst population in Yunnan is highly variable in races and virulence. A total of 64 races were identified and the top two most frequent races were 550273 (Virulence/Avirulence formula: 1, 6, 7, 9, 27, 43, 44, SP, Exp2, Tye / 5, 8, 10, 15, 17, 24, 32, Tr1 and 550073(Virulence/Avirulence Formula: 1, 6, 7, 9, 43, 44, SP, Exp2, Tye / 5, 8, 10, 15, 17, 24, 27, 32,Tr1), with frequency of 28.68% and 11.76%, respectively. The remaining races had frequencies less than 5.0%. No virulence were found for Yr5, Yr10, Yr15, and Yr32. The frequencies of virulence to Yr24, YrTr1, Yr8, and Yr17 ranged from 0.74% to 11.76%. The frequency of virulence to Yr27 was 52.94%; and virulence to Yr1, Yr6, Yr7, Yr9, Yr43, Yr44, YrSP, YrExp2, and YrTye ranged from 79.94% to 91.91%. The results will guide the breeding and wheat production. (This study was supported by National Natural Science Foundation of China, Grant No. 31260417 and 31560490)

Tags:

Progress in breeding for biofortified wheat and identification of genomic regions for enhanced grain zinc and iron in wheat

BGRI 2018 Poster Abstract
Velu Govindan CIMMYT
Leonardo,Crespo-Hererra, Julio, Huerta, Ravi, Singh, , , , , , , , , , , , , , , , , , , , , , , ,

Malnutrition affects more than 2 billion people across the globe, particularly zinc and iron deficiency causes major health problem in developing world. The biofortified staple food crops such as wheat, is an important channel to contribute to the hidden hunger problem in low income countries. Breeding for enhanced zinc concentration in wheat was initiated by crossing high zinc sources identified among synthetic wheats, T. dicoccum, T. spelta and landraces. These crosses have resulted in wheat varieties with competitive yields and enhanced grain zinc were adapted by farmers in South Asia. CIMMYT-derived early-maturity wheat cultivar 'Zinc-Shakti' with about 40% increased zinc (+14 ppm), is now grown in eastern India through public-private partners. The two CIMMYT-derived biofortified varieties: 'WB2' and 'HPBW01' released in 2016 for northwestern plains zone of India. In Pakistan, 'Zincol' was released in 2016. The first high zinc wheat variety (Bari-Gom 33) with better resistance to wheat blast have been released in Bangladesh for commercial cultivation in 2017. Targeted crosses with increased population sizes were used to obtain superior progeny lines that have high zinc levels in combination with other essential traits. This has resulted in the incorporation of several novel alleles for grain zinc and iron in elite, high-yielding germplasm. High zinc and iron are under quantitative genetic control and further progress is possible as multiple QTL are pyramided in high yielding wheats. High-throughput, non-destructive phenotyping for grain zinc and iron using the X-ray fluorescence (XRF) analysis has facilitated the selection dramatically. Gene discovery and mapping studies leading to the utilization of markers to further improve the breeding efficiency. Rapid adoption of high zinc wheat varieties in South Asia and beyond is expected with the second wave of high zinc wheat lines with superior yield, heat and drought tolerance and resistance to rusts and other foliar diseases.

Tags:

Registration of 'Malika': A Bread Wheat Cultivar Developed through Doubled Haploid Breeding

BGRI 2018 Poster Abstract
Sripada Udupa ICARDA
Jamal El Haddoury, Ahmed Amri

Malika', a hard red spring wheat (Triticum aestivum L.) cultivar developed using doubled haploid technology by the Institut National de la Recherche Agronomique (INRA), Morocco, and tested as 06DHBW48, was approved for release in 2016 by the Office National de S?curit? Sanitaire des Produits Alimentaires (ONSSA), Morocco. Malika was selected from the doubled haploids derived from the cross 'Achtar3*//'Kanz'/Ks85-8-4). Achtar and Kanz are Moroccan varieties originating from segregating populations from CIMMYT. Achtar and Kanz are a well adapted to Moroccan conditions but susceptible to the Hessian fly, yellow rusts and some races of leaf rust. 'Achtar' was crossed with it in order to incorporate the Hessian fly resistance, yellow rust resistance and leaf rust resistance and 'Achtar' was crossed with Kanz/Ks85-8-4 having resistance to Hessian fly, yellow rust and leaf rust. Backcrossed 3 times with 'Achtar', and selected lines having resistance to the Hessian fly, yellow rust and leaf rust from the population derived from each backcross. Finally the selected the resistant line was used develop doubled haploids. The doubled haploid lines produced were tested in the laboratory and field for Hessian fly and the rust resistance. The resistant lines were incorporated in the multi-local yield trials and three promising lines with the resistance to Hessian fly, yellow rust and leaf rust and better yield and quality were submitted for registration in the official catalog in 2014. After 2 years of testing (years 2014-15 and 2015-16), one line (06DHBW48) was accepted for the registration and designated as 'Malika'. 'Malika' is a semi-dwarf variety, well adapted to semi-arid regions, early maturing, high yielding, tolerant to drought and resistant to Hessian fly, leaf rust and yellow rust.

Tags:

Pages