All BGRI Abstracts

Displaying 81 - 90 of 197 records | 9 of 20 pages

Cytogenetic manipulation to enhance the utility of alien resistance genes

BGRI 2009 Plenary Abstract
Mike Pumphrey Department of Crop and Soil Sciences, Washington State University, USA
View pumphrey_2009.pdf (236.58 KB)

Although many wild relatives in the Triticeae tribe have been exploited to transfer stem rust resistance genes to wheat, the derived germplasms have often not been immediately useful in wheat breeding programs. Too frequently, large chromosome segments surrounding desirable genes also harbor deleterious genes that result in unacceptable yield or quality. Recombination between chromosomes of wheat and chromosomes of distant relatives is very rare due to genetic restrictions on chromosome pairing in polyploid wheat. However, chromosome pairing can be manipulated by utilizing mutant stocks that relax this tight genetic control. The ph1b mutant produced by E.R. Sears over 30 years ago is an invaluable chromosome engineering tool, readily employed in the age of high-throughput molecular genetics. Shortened translocations have already been produced for stem rust resistance genes Sr26 and SrR using ph1b-induced homoeologous recombination. We are currently using induced-homoeologous recombination to reduce the sizes of alien chromosome segments surrounding TTKSK-effective genes Sr32, Sr37, Sr39, Sr40, Sr43, Sr47, SrTt3, Sr2S#1 and SrAeg5 to eliminate linkage drag putatively associated with these genes. Additional TTKSK-effective genes Sr44, SrHv6, SrAsp5, and SrAse3 were first targeted for development of compensating translocation stocks and then for shortening the size of each alien segment. Population development is also underway to characterize several potentially new sources of resistance.

Tags:

Cloned rust resistance genes and gene based molecular markers in wheat: Current status and future prospects

BGRI 2009 Plenary Abstract
Kota CSIRO Plant Industry, Australia
View kota_2009.pdf (109.62 KB)

Two broad categories of resistance genes in wheat have been described. One group represents the so called seedling resistance or the ‘gene for gene’ class that often provides strong resistance to some but not all strains of a rust species. The other category referred to as adult plant resistance provide partial resistance that is expressed in adult plants during the critical grain filling stage of wheat development. A few seedling rust resistance genes have been cloned in wheat and other cereals and are predominantly from the nucleotide binding site/leucine rich repeat class which is associated with localized cell death at the pathogen entry site. Until recently, the molecular basis of race non-specific, partial and slow rusting adult plant resistance genes were unknown. Gene products that differ from known plant resistance genes were revealed from the recent cloning of the Yr18, Yr36 and Lr34 adult plant genes in wheat. The available range of diverse resistance gene sequences provide entry points for developing genebased markers and will facilitate selection of germplasm containing unique resistance gene combinations.

Tags:

Molecular-genetic dissection of rice nonhost resistance to wheat stem rust

BGRI 2009 Plenary Abstract
Michael Ayliffe CSIRO Plant Industry, Australia
View ayliffe_2009.pdf (244.47 KB)

Rust diseases remain a significant threat to the production of most cereals including wheat. New sources of resistance are continually sought by breeders to combat the emergence of new pathogen races. Rice is atypical in that it is an intensively grown cereal with no known rust pathogen. The resistance of rice to cereal rust diseases is referred to as nonhost resistance (NHR), a resistance mechanism that has only recently become genetically tractable. In this report, the mechanisms of rice NHR to wheat stem rust and other cereal rust diseases are explored and the potential for transferring this durable disease resistance to wheat is considered. Approaches being undertaken for the molecular-genetic dissection of rice NHR to rust are described.

Tags:

Screening for stem rust resistance in East Africa

BGRI 2009 Plenary Abstract
Davinder Singh The University of Sydney, Plant Breeding Institute, Australia
View dsingh_2009.pdf (264.88 KB)

The East Africa program of the Borlaug Global Rust Initiative (BGRI) was launched to reduce the scale and scope of wheat stem rust epidemics in Kenya and Ethiopia, and to mitigate the global threat of virulent and dangerous rust races originating from this region. Since the launch in 2005, the screening facilities in Kenya and Ethiopia have helped to determine the extent of the world’s vulnerability to stem rust race Ug99 and its variants, identify diverse sources of resistance including adult plant resistance based on minor genes, and catalyze a comprehensive global response, leading to expanded awareness, expanded research and breeding activities, and resource mobilization. This paper reviews the role and achievements of the eastern African screening facilities along with the opportunities and challenges faced by the facilities during the ongoing global response to the emergence of Ug99 and its variants.

Tags:

Developing and optimizing markers for stem rust resistance in wheat

BGRI 2009 Plenary Abstract
Long-Xi Yu Department of Plant Breeding, Cornell University
View yu_2009.pdf (1.95 MB)

High quality molecular markers that are closely linked, codominant, and high throughput are critical for developing varieties with durable rust resistance. We are using a combination of microsatellite, sequence tagged site, and Diversity Array Technology markers for haplotyping, pyramiding, and mapping stem rust resistance genes. The primary goal of our research team is to identify and optimize markers for previously characterized and novel stem rust resistance genes in wheat. The specific objectives are to: 1) optimize markers for previously characterized stem rust resistance genes to maximize efficiency of the breeding programs, 2) haplotype uncharacterized rust resistant genotypes to infer novelty and to plan new mapping experiments, 3) pyramid novel sources of rust resistance, and 4) map novel sources of rust resistance, including adult plant resistance. To date, we have evaluated 58 markers associated with 21 stem rust resistance genes and used 20 for haplotyping 318 wheat lines and varieties for 15 Ug99 effective resistance genes. This germplasm panel is also being DArT genotyped. For tetraploids, the pyramiding includes Sr2, Sr13 and Sr25 in the breeding line UC1113 which is a high yielding semi-dwarf durum variety with the high-grain protein content gene Gpc-B1 and the non-race specific stripe rust resistance gene Yr36. The Australian group is developing markers for the stem rust resistance genes Sr33 and Sr45 that come from Aegilops tauschii and are located on wheat chromosomes 1DS. Diagnostic, codominant markers for Sr25 and Sr26 have been developed and are being pyramided into CIMMYT breeding lines. Three new sources of race-specific resistance in CIMMYT-derived spring wheat have been mapped and are designated SrA, SrB, and SrC. SrA mapped on 3DL, SrB on 3BS and SrC on 5DL. These genes provided moderate levels of resistance to stem rust at the seedling stage and acceptable to moderate levels at the adult plant stage.

Tags:

History and status of the wheat rusts

BGRI 2009 Plenary Abstract
Robert McIntosh The University of Sydney, Plant Breeding Institute, Australia
View Mcintosh_2009.pdf (273.55 KB)

The rusts have been ongoing problems for wheat production probably since domestication of the crop about 8,000 years ago. Epidemics vary in size and frequency with host genotype and environment, wet years being ‘rust’ years. Although partial control in modern agriculture was achieved with resistant varieties, conditions favoring epidemics were made worse with the intensification of production and greater resistance gene uniformity in the host. The current Ug99 incident illustrates the situation of very widely adapted successful genotypes grown across huge areas in the presence of an ongoing threat from a recently emerged widely virulent and obviously highly aggressive pathotype of the stem rust pathogen. This paper addresses some of the history of cereal rusts and reviews underlying principles of host pathogen genetics, some of which are being neglected in the period of modern genetics.

Tags:

Using race survey outputs to protect wheat from rust

BGRI 2009 Plenary Abstract
Robert Park The University of Sydney, Plant Breeding Institute, Australia
View park_2009.pdf (140.72 KB)

Race (pathotype) surveys of cereal rust pathogens have been conducted in many parts of the world since the early 1900s. The only way to identify rust pathotypes remains virulence testing in greenhouse tests using genotypes (“differentials”) carrying different resistance genes. Virulence determinations have rarely targeted genes conferring adult plant resistance because of the technical difficulties of working with adult plants under controlled conditions. Where pathotype surveys have been conducted in a robust and relevant way, they have provided both information and pathogen isolates that underpinned rust control efforts, from gene discovery to post-release management of resistance resources. Information generated by pathotype surveys has been used to: devise breeding strategies; indicate the most relevant isolates for use in screening and breeding; define the distribution of virulence and virulence combinations; allow predictions of the effectiveness/ ineffectiveness of resistance genes; and issue advance warning to growers by identifying new pathotypes (both locally evolved and introduced) before they reach levels likely to cause significant economic damage. To be most effective, pathotype surveys should also provide fully characterized isolates (defined pathotypes) for use in identifying new sources of resistance and screening breeding material. Although constrained to some extent by a lack of markers, particularly those not subject to natural selection, surveys have also provided considerable insight into the dynamics of rust pathogen populations, including the evolution and maintenance of virulence, and migration pathways, including periodic long-distance migration events.

Tags:

The global cereal rust monitoring system

BGRI 2009 Plenary Abstract
David Hodson CIMMYT-Ethiopia
View hodson_2009.pdf (620.69 KB)

Cereal rusts have long been the scourge of wheat farmers worldwide. Three fungal rusts are capable of inflicting serious economic damage to wheat; namely, leaf rust, stripe rust, and stem rust. Historically, stem rust was the most feared disease of wheat, but since the 1950s, effective resistance has protected crops and livelihoods. By the mid 1990s stem rust had been reduced to negligible levels worldwide. The detection of the Ug99 lineage of stem rust in Uganda in 1998 has challenged the assumption that stem rust was a conquered disease, and up to 80% of the world’s wheat is now considered stem rust susceptible. Ug99 has sparked a global effort by wheat scientists to counter the threat and has highlighted the need for effective surveillance and monitoring systems. Outside of a few developed countries, monitoring efforts are often irregular or even non-existent and no coordinated global surveillance effort currently exists. Ug99 has provided the impetus to implement a global surveillance and monitoring system that provides relevant and timely information as a global public good. Key components, current status and future plans for this emerging cereal rust monitoring system are described. The immediate concern regarding Ug99 makes it an initial priority focus, but the other cereal rusts cannot nor should be excluded. Lessons can be learned and parallels drawn from existing successful trans-boundary monitoring schemes such as the Desert Locust monitoring and early warning system implemented by the UN Food and Agriculture Organization (FAO). Successful networking, expanded capacity of partners, efficient field surveys and data handling, plus regular timely targeted information products are all components of the Desert Locust scheme that need to be transferred to a cereal rust monitoring system. Through a consortium of partners several advances have already been made targeting the Ug99 lineage of stem rust. GIS technology is forming the backbone of an emerging rust monitoring and surveillance system being developed collaboratively by international agricultural research centers, UN agencies and advanced research institutes. The system already incorporates a rapidly expanding volume of standardized geo-referenced field survey data, routine use of wind models and public domain web tools delivering information in near-real time. Several challenges still remain before a fully operational system is created, and these are outlined. The need for vigilance and a lack of complacency regarding unexpected events are highlighted. These might include; accidental assisted movements, natural long distance dispersal and the threat of rust pathogens occurring in “non-traditional” areas as a result of climate change.

Tags:

Advances in host-pathogen molecular interactions: rust effectors as targets for recognition

BGRI 2009 Plenary Abstract
Peter Dodds CSIRO Plant Industry, Australia
View dodds_2009.pdf (131.27 KB)

Rust fungi can cause devastating diseases in agriculture and are particularly important pathogens of wheat. We have been using the flax (Linum usitatissimum) and flax rust (Melampsora lini) model system to study disease resistance mechanisms to this important class of pathogens. Rust resistance in flax and other plants is mediated by the plant innate immunity system in which highly polymorphic resistance (R) proteins act as receptors that recognize specific avirulence (Avr) proteins produced by the pathogen. This race-specific resistance is characterised by Flor’s “gene-for-gene” model, first proposed based on the flax rust system. In gene-for-gene resistance, recognition between the R and Avr proteins initiates defense responses leading to host resistance to infection, including a localised necrosis or hypersensitive response. Nineteen different rust resistance genes have been cloned from flax, including 11 allelic variants of the L locus, which all encode cytosolic proteins with conserved nucleotide-binding (NB) and Leucine-rich repeat (LRR) domains. Four families of Avr genes, AvrL567, AvrM, AvrP123 and AvrP4, have been identified in the flax rust pathogen and all encode small secreted proteins. Rust Avr proteins are secreted from haustoria, specialized infection structures that penetrate the host cell wall, and are translocated across the host plasma membrane and into the host cytoplasm. These proteins are probably members of a suite of disease ‘effectors’ involved in manipulating host cell biology to facilitate infection, but have become targeted for recognition by the host immune system. As yet the mechanism of Avr protein transport is unknown, but could prove to be a useful target for novel disease control strategies. Recognition of at least two of these Avr proteins is based on direct interaction with the cytoplasmic NB-LRR R proteins. One interesting observation from the flax rust system is that all of the virulent rust strains retain intact copies of the Avr genes, but have altered their sequences sufficiently to escape recognition. Thus it may be possible to re-engineer R genes to recognise new Avr gene variants. We are currently identifying haustorially expressed secreted proteins from wheat stem rust as candidate Avr/effector proteins.

Tags:

Global stem rust surveillance in practice

BGRI 2009 Plenary Abstract
Zac Pretorius Department of Plant Sciences, University of the Free State, South Africa
View pretorius_2009.pdf (118.71 KB)

An assessment was made of stem rust race analysis on a global scale. Responses were obtained from 23 rust workers representing 21 countries. Five laboratories have an institutional history in stem rust race analysis of more than 60 years, whereas personal experience in this field ranged from 0 to 35 years. The number of stem rust samples processed from 2006 to 2008 varied greatly between countries. For the three year period most collections were characterized in Canada, followed by Georgia, USA, South Africa and Australia. Most laboratories use the North American differential set and nomenclature system. However, these entries are often supplemented by additional tester lines from the Stakman set, other single gene lines or local cultivars. Differential sets varied between eight and 50 entries. More than half of the respondents indicated that they often encounter seed mixtures amongst their differentiating lines. In recent surveys most races were detected in Ethiopia, followed by Georgia and China. One race dominated the USA and Canadian stem rust population. In South America and Australia stem rust has been rare in commercial wheat for many years. Races within the Ug99 cluster were frequently identified in stem rust collections from Kenya and Ethiopia. Two races related to Ug99, but avirulent on Sr31, occur in South Africa. Several laboratories are in the process of purifying and bulking differential seed, which appears to be one of the major limiting factors in reliable stem rust race analysis. Improvement of infrastructure and training of individuals inexperienced with stem rust should improve global surveillance efforts. In addition, countries doing race analysis should keep viable culture collections in long-term storage.

Tags:

Pages