All BGRI Abstracts

Displaying 411 - 416 of 416 records | 42 of 42 pages

Characterization of seedling and adult plant resistance to leaf rust in African wheat germplasm

Kankwatsa The University of Sydney, Plant Breeding Institute, Australia

Many of the catalogued leaf rust resistance genes in wheat deployed in agriculture have been overcome by variants of Puccinia triticina (Pt), the causal pathogen of leaf rust. Discovery and characterization of new sources of resistance in various germplasms using multipathotype tests and molecular markers could permit future diversification of the genetic base of leaf rust resistance in wheat. In searching for new sources of leaf rust resistance, 140 wheat lines from 14 African countries were tested with 8 Australian Pt pathotypes. Seedling tests revealed that 41% of the lines were susceptible to all pathotypes, 31% were postulated to carry either one of 10 resistance genes (Lr1, Lr2a, Lr3a, Lr13, Lr18, Lr23, Lr24, Lr26, Lr37 or Lr73) or one of five gene combinations (Lr2a+Lr3a, Lr1+Lr13, Lr1+Lr23, Lr1+Lr13+Lr73 and Lr23+Lr73). Twenty-eight percent of the lines were postulated to carry uncharacterized seedling resistance genes. Based on average coefficients of infection (ACI), 101, 25 and 11 lines showed high (ACI 0-19), moderate (ACI 21-38) and low (ACI 41-56) levels adult plant resistance, respectively, whereas three lines were moderately susceptible to susceptible (ACI 63-76). Genotyping of 74-78 lines that were anticipated to carry APR genes, using the molecular markers: csLV34 (linked to Lr34) and KASP SNP markers SNP1G22 and SNPT10 (linked to Lr46 and Lr67), respectively, revealed the presence of Lr34, Lr46 and Lr67 in 11, 22 and 14 wheat lines, respectively. The identities of the APR in the remaining 22 lines are unknown, and potentially represent new resistance sources. Genetic analyses of these uncharacterized APR sources are underway to select single gene lines and allow fine mapping.


Brachypodium distachyon as a model to study nonhost resistance to wheat stripe rust

Gilbert CSIRO Plant Industry, Australia

The model grass Brachypodium distachyon has been used to study nonhost resistance mechanisms to the wheat stripe rust pathogen, Puccinia striiformis f. sp tritici. Numerous B. distachyon accessions were screened with an array of UK and Australian P. striiformis isolates and distinct infection phenotypes identified, ranging from complete resistance to partial susceptibility. Three mapping families were established - BdTR10H x TEK4, BdTR13K x Bd21 and ABR6 x Bd21 - and immunity was dominantly inherited when they were tested with one Australian and three UK isolates. Depending upon the mapping family, between one and three genes for stripe rust resistance were present and designated Yrr1 to Yrr3. Yrr1, which is present in all three families, was effective against all isolates and was fine mapped to a 100 kilobase region containing six candidate genes. Interestingly, no candidate was homologous to a known resistance gene. Yrr2, which is present in the BdTR13K x Bd21 and ABR6 x Bd21 families, is race-specific and was mapped to a 1 megabase region that contains multiple, classic NBS-LRR resistance gene candidates. Yrr3, which is present in the ABR6 x Bd21 family and effective against all isolates, was mapped to a 400 kilobase region also containing NBS-LRR gene candidates. Agrobacterium-mediated transformation of Yrr1 candidates is underway in Brachypodium for complementation, and in common wheat to test for interspecies transfer of characterized resistance.


Responses of some Turkish winter durum wheat genotypes in preliminary yield trials to stem, leaf and stripe rusts

Mert Central Research Institute for Field Crops, Turkey

Durum wheat is second important crop after bread wheat and it was grown as spring and winter type in Turkey. Rusts are the most important diseases limiting durum wheat production in Turkey. The aim of the study was determining of the resistance of the 232 Turkish winter durum wheat genotypes in preliminary yield trials developed by the Central Research Institute for Field Crops (CRIFC) to rusts.  For this purpose, adult plant and seedling test were conducted for yellow rust while only seedling test were conducted for leaf and stem rust. Evaluations were carried out at the research facilities of CRIFC at İkizce and Yenimahalle in Ankara in the 2014 season. For adult plant reactions; the genotypes were inoculated with local Pst populations (virulent on Yr2,6,7,8,9,25,27,Sd,Su,Avs). Stripe rust development on each entry were scored using the modified Cobb scale when the susceptible check cv. Little Club had reached 80S infection severity in June, 2014. Coefficients of infections were calculated and values below 20 were considered to be resistant. For seedling test; the seedling was inoculated with local Pgt (avirulent on Sr24, Sr26, Sr27, and Sr31), Pt (avirulent on Lr9, Lr19, Lr24, and Lr28) and Pst populations. Stripe, leaf and stem rust development on each entry were scored after 14 days with 0-4 and 0-9 scale for leaf-stem rust and yellow rust, respectively. In seedling stage, 141(65%), 41(18%), and 114 (49%) genotypes were resistant to local Pgt, Pt, and Pst populations, respectively. In adult plant test, 21 (9%) genotypes were resistant to Pst.  The resistance genotypes to stem, leaf, and stripe rust were determined with this research.


Achieving durable rust resistance in wheat through deployment of major and minor genes

Thapa Agriculture Botany Division, Nepal Agricultural Research Council (NARC), Nepal

Stripe rust and leaf rust have been major constraints to wheat production in Nepal since the 1960s. Several rust epidemics causing hardship for Nepalese wheat growers were due to race changes. Breeding for rust resistance was initiated with establishment of the National Wheat Research Program in 1972, but concerted searches for durable resistance came later with the introduction of wheat genetic resources from CIMMYT, Mexico. The early wheat varieties Nepal 297, Siddhartha, Vinayak, BL1473, BL 1022 and Annapurna series with leaf rust and stripe rust resistance genes Lr13, Lr23, Lr26 and Yr9, and Yr27 in the 1970s and 1980s succumbed to new races within a few years of release. However, Bhrikuti (CMT/COC75/3/PLO/FURY/ANA) with both major and minor gene combinations (Lr10, Lr14a, Lr26/Yr9/Sr31+ and Lr34/Yr18) and released in 1994 was unaffected by Yr9 virulence in 1997 and Yr27 virulence in 2004. This variety with >20 years of leaf rust and stripe rust protection continues to be the most popular wheat variety in Nepal. Three other varieties, Gautam (Siddhartha/Ning8319//Nepal 297) released in 2004, WK 1204 (SW89-3064/Star) released in 2007, and Pasang Lhamu (PGO/SERI) released in 1997 with Lr16, Lr26/Yr9/Sr31, Lr34/Yr18, Lr46/Yr29, Yr7, and Sr2 also remain resistant. The Ug99 resistant varieties Vijay (NL748/NL837), Danphe(KIRITATI//2*PBW65/2*SERI.1B) and Tilottama (Francolin#1 = Waxwing*2/Vivitsi) also possesses APR to the three rusts. Nepalese wheat researchers work closely with the CIMMYT Global Wheat Program and DRRW/BGRI to utilize knowledge and APR germplasm. Strong networks for participatory varietal selection involving women farmers in both the hills and terai help in faster adoption and in establishing varietal diversity. In summary, Nepalese wheat breeders have successfully used APR in protecting wheat crops.


Identification of naturalized and cultivated Berberis species in South Africa

Keet University of Stellenbosch, South Africa
PDF icon View keet.pdf (1.32 MB)

While Africa is home to three Berberis species (B. holstii, B. hispanica and B. vulgaris), genera of the family Berberidaceae do not occur naturally in South Africa. However, due to the trade in ornamental plants, a total of 11 Berberis species, 11 cultivars and 8 hybrids were historically and/or are currently cultivated in the country. The current invasive status of most of these species is unknown, but two naturalized Berberis populations were recently discovered. B. julianae was found in the Golden Gate Highlands National Park in eastern Free State province, and B. aristata was found in the Woodbush Forest Reserve in Limpopo province. Since several Berberis species could act as alternate hosts for Puccinia graminis and P. striiformis, a phylogenetic study was conducted to identify both naturalized species, as well as several cultivated specimens. One of the cultivated specimens was identified as B. vulgaris, a species well known for its susceptibility to P. graminis. Knowledge gained from this study will be used to intensify the search for more naturalized Berberis populations, as well as to assess the potential threat to wheat cultivation in the country.


Crosstalk between CBL-CIPK and SA signaling pathways in wheat-Puccinia striiformis f. sp. tritici pathosystem

Guo State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, PR China

Intracellular calcium changes during plant–pathogen interaction are essential early events leading to both local and systemic acquired resistances. Salicylic acid, a critical messenger, is also required for both responses. However, the relationship between the CBL-CIPK and SA signaling pathways during wheat–Pst interaction is unclear. In this study, we isolated seven wheat CBL and 11 wheat CIPK genes and designated them as TaCBL1, 2, 3, 4, 6, 7, 9 and TaCIPK2, 5, 7, 9, 10, 14, 15, 17, 23, 31, 32. Some wheat CBLs and CIPKs were functionally characterized. Concurrently, wheat TaNPR1 as a master regulator of SA-mediated host response during Pst infection was functionally characterized. Silencing of TaCBL4, TaCIPK10 and TaNPR1 permitted increased rust development in a wheat variety that was resistant to Pst pathotype CYR23. Decreased levels of salicylic acid (SA) were observed in TaCBL4- and TaCIPK10-silenced wheat plants. Yeast two-hybrid and biomolecular fluorescence complementation (BiFC) revealed that TaCIPK10 interacted with both TaCBL4 and TaNPR1. These results suggest that a TaCBL4-TaCIPK10-TaNPR1 complex is involved in innate immunity of wheat to Pst.